(本小題滿分14分)
已知點(diǎn)是圓上任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱。線段的中垂線分別與交于兩點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)斜率為的直線與曲線交于兩點(diǎn),若(為坐標(biāo)原點(diǎn)),試求直線在軸上截距的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的一個端點(diǎn)的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個定點(diǎn)T,使得以AB為直徑的圓恒過點(diǎn)T。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知+=1的焦點(diǎn)F1、F2,在直線l:x+y-6=0上找一點(diǎn)M,求以F1、F2為焦點(diǎn),通過點(diǎn)M且長軸最短的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知是橢圓的兩個焦點(diǎn),是橢圓上的點(diǎn),且.
(1)求的周長;
(2)求點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長為2.
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍;
(3)在(2)的條件下,線段AB的垂直平分線l0與y軸交于M(0,m),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過點(diǎn)三點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于的任意一點(diǎn),,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)如果正△ABC中,D∈AB,E∈AC,向量,求以B,C為焦點(diǎn)且過點(diǎn)D,E的雙曲線的離心
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com