15.已知函數(shù)sinθ-$\sqrt{3}$cosθ=-2,則三角式sin2θ+cos2θ+3的值為( 。
A.$\frac{15}{4}$B.$\frac{15}{2}$C.-$\frac{15}{4}$D.-$\frac{15}{2}$

分析 由已知結(jié)合輔助角公式求得θ,再由同角三角函數(shù)的基本關(guān)系式化簡(jiǎn)求得答案.

解答 解:∵sinθ-$\sqrt{3}$cosθ=-2,
∴$2sin(θ-\frac{π}{3})=-2$,則sin($θ-\frac{π}{3}$)=-1,
∴$θ-\frac{π}{3}=-\frac{π}{2}+2kπ,k∈Z$,
則$θ=-\frac{π}{6}+2kπ,k∈Z$.
∴$cos2θ=cos(-\frac{π}{3}+2kπ)=\frac{1}{2}$,
∴sin2θ+cos2θ+3=$\frac{1-cos2θ}{2}+cos2θ+3=\frac{7}{2}+\frac{cos2θ}{2}$
=$\frac{7}{2}+$$\frac{1}{4}=\frac{15}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查同角三角函數(shù)基本關(guān)系式的運(yùn)用,考查三角函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在極坐標(biāo)系中,點(diǎn)(2,$\frac{π}{6}$)到直線ρsinθ=3的距離等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,若對(duì)于任意的x∈R,不等式f(x)>g(x)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,線段MN是⊙O1和⊙O2的公共弦,AN是⊙O2的切線,過M點(diǎn)的直線分別交⊙O1和⊙O2于B,C兩點(diǎn),交AN于點(diǎn)D.
(1)證明:$\frac{BD}{CD}$=$\frac{AB}{NC}$;
(2)若CN是⊙O1的切線,且ND=6,MC=5,AD=2,求CN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)判斷f(x)的奇偶性并予以證明;
(2)當(dāng)a>1時(shí),求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線x=$\frac{{a}^{2}}{c}$(c是橢圓的焦距長(zhǎng)的一半)交x軸于A點(diǎn),橢圓的上頂點(diǎn)為B,過橢圓的右焦點(diǎn)F作垂直于x軸的直線交橢圓的第一象限于P點(diǎn),交AB于D點(diǎn),若點(diǎn)D滿足2$\overrightarrow{OD}$=$\overrightarrow{OF}$+$\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)).
(I)求橢圓的離心率;
(II)若半焦距為3,過點(diǎn)A的直線l交橢圓于兩點(diǎn)M、N,問在x軸上是否存在定點(diǎn)C使$\overrightarrow{CM}$•$\overrightarrow{CN}$為常數(shù)?若存在,求出C點(diǎn)的坐標(biāo)及該常數(shù)值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若tan2α=-$\frac{{3\sqrt{7}}}{7}$,α∈(-$\frac{π}{4}$,$\frac{π}{4}}$),則sinα+cosα等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示的幾何體中,四邊形ABCD是邊長(zhǎng)為$\sqrt{2}$的正方形,矩形ADD1A1所在的平面垂直于平面ABCD,且AA1=2,則該幾何體ABCD-A1D1的外接球的體積是( 。
A.$\frac{{2\sqrt{2}π}}{3}$B.$\frac{{4\sqrt{2}π}}{3}$C.$2\sqrt{2}π$D.$\frac{{8\sqrt{2}π}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案