17.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=bn•2n,求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (Ⅰ)數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,可得a1=11.當(dāng)n≥2時(shí),an=Sn-Sn-1.可得an.{bn}是等差數(shù)列,設(shè)公差為d,則an=bn+bn+1=2bn+d.當(dāng)n=1時(shí),2b1=11-d;當(dāng)n=2時(shí),2b2=17-d即可得出bn
(II)cn=bn•2n=(3n+1)•2n.利用錯(cuò)位相減法即可得出.

解答 解:(Ⅰ)∵數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,
∴a1=11.
當(dāng)n≥2時(shí),an=Sn-Sn-1=3n2+8n-3(n-1)2-8(n-1)=6n+5.
又∵an=6n+5對n=1也成立所以an=6n+5,{bn}是等差數(shù)列,設(shè)公差為d,則an=bn+bn+1=2bn+d.
當(dāng)n=1時(shí),2b1=11-d;當(dāng)n=2時(shí),2b2=17-d
由$\left\{\begin{array}{l}{2_{1}=11-d}\\{2_{2}=17-d}\end{array}\right.$,
解得d=3,b1=4.
所以數(shù)列{bn}的通項(xiàng)公式為:bn=4+3(n-1)=3n+1.
(II)cn=bn•2n=(3n+1)•2n
于是,Tn=4×2+7×22+10×23+…+(3n+1)•2n
兩邊同乘以2,得2Tn=4×22+7×23+…+(3n-2)•2n-(3n+1)•2n+1
兩式相減,得-Tn=8+3(22+23+…+2n)-(3n+1)•2n+1=8+3×$\frac{4({2}^{n-1}-1)}{2-1}$-(3n+1)•2n+1
可得:Tn=4+(3n-2)•2n+1

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、錯(cuò)位相減法、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若f(x)=x4-3x3+1,則f′(x)=( 。
A.4x3-6x2B.4x3-9x2C.4x3+6x2D.4x3-6x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(3-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,則f(-1)+f(log26)=( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對任意k∈R,直線y=klog2x-2總過一個(gè)定點(diǎn),該定點(diǎn)坐標(biāo)為(  )
A.(1,-2)B.(-1,2)C.(2,-1)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.y=4cosx-e|x|圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)數(shù)列{an}的前n項(xiàng)和是Sn,滿足$n({{S_{n+1}}+{S_{n-1}}-2{S_n}})=2+{a_n}({n≥2,n∈{N^*}})$,a1=1,a2=2,則當(dāng)n≥2時(shí),Sn=n2-n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)$f(x)={cos^2}(ωx-\frac{π}{6})-{cos^2}ωx$,其中ω>0,它的最小正周期π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)將y=f(x)的圖象先向右平移$\frac{π}{4}$個(gè)單位,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$,縱坐標(biāo)變?yōu)樵瓉淼?倍,所得到的圖象對應(yīng)的函數(shù)記為g(x),求g(x)在區(qū)間$[{-\frac{π}{24},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)P是△ABC內(nèi)一點(diǎn)(不包括邊界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,m,n∈R,則(m-2)2+(n-2)2的取值范圍是$(\frac{9}{2},8)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$y=\sqrt{{{log}_{\frac{1}{2}}}({x^2}-2)}$的定義域是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$)C.[-3,-1)∪(1,3]D.[-$\sqrt{3}$,-$\sqrt{2}$)∪($\sqrt{2}$,$\sqrt{3}$]

查看答案和解析>>

同步練習(xí)冊答案