16.已知f(x)=2xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x∈(0,+∞),使f(x)≤g(x)成立,求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問題等價于a≥(2ln x+x+$\frac{3}{x}$)min,記h(x)=2ln x+x+$\frac{3}{x}$,x∈(0,+∞),根據(jù)函數(shù)的單調(diào)性判斷即可.

解答 解:(1)f(x)的定義域為(0,+∞),f′(x)=2(ln x+1),
令f′(x)=0,得x=$\frac{1}{e}$,當(dāng)x∈時,f′(x)<0,當(dāng)x∈時,f′(x)>0,
所以f(x)在$\b\lc\(\rc\)(\a\vs4\al\co1(0,\frac{1}{e}))$上單調(diào)遞減;在$\b\lc\(\rc\)(\a\vs4\al\co1(\frac{1}{e},+∞))$上單調(diào)遞增.
(2)存在x∈(0,+∞),使f(x)≤g(x)成立,
即2xln x≤-x2+ax-3在x∈(0,+∞)能成立,
等價于a≥2ln x+x+$\frac{3}{x}$在x∈(0,+∞)能成立,
等價于a≥(2ln x+x+$\frac{3}{x}$)min
記h(x)=2ln x+x+$\frac{3}{x}$,x∈(0,+∞),
則h′(x)=$\frac{2}{x}$+1-$\frac{3}{x2}$=$\frac{x2+2x-3}{x2}$=$\frac{?x+3??x-1?}{x2}$.
當(dāng)x∈(0,1)時,h′(x)<0,
當(dāng)x∈(1,+∞)時,h′(x)>0,
所以當(dāng)x=1時,h(x)取最小值為4,故a≥4.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=(ax2+bx)ex的圖象如圖所示,則實數(shù)a,b的值可能為( 。
A.a=1,b=2B.a=1,b=-2C.a=-1,b=2D.a=-1,b=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四邊形ACEF是菱形,∠CAF=60°.
(1)求證:BC⊥平面ACEF;
(2)求平面ABF與平面ADF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=a-$\frac{1}{{2}^{x}+1}$是奇函數(shù),則實數(shù)a的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線的頂點是雙曲線16x2-9y2=144的中心,而焦點是雙曲線的右頂點,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|$\frac{x+1}{1-x}$>0},B={x|x+2≥0},則A∩B=( 。
A.{x|-1<x<1}B.{x|x≥-2}C.{x|-2≤x<1}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|2x-1|-2|x-1|.
(I)作出函數(shù)f(x)的圖象;
(Ⅱ)若不等式$\frac{a}{1-a}$≤f(x)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1( a>b>0)經(jīng)過點 (1,$\frac{{\sqrt{3}}}{2}$),離心率為$\frac{{\sqrt{3}}}{2}$,點 A 為橢圓 C 的右頂點,直線 l 與橢圓相交于不同于點 A 的兩個點P (x1,y1),Q (x2,y2).
(Ⅰ)求橢圓 C 的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0 時,求△OPQ 面積的最大值;
(Ⅲ)若直線 l 的斜率為 2,求證:△APQ 的外接圓恒過一個異于點 A 的定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若命題“?x∈[-1,1],1+2x+a•4x<0”是假命題,則實數(shù)a的最小值為-6.

查看答案和解析>>

同步練習(xí)冊答案