【題目】在△ABC中,已知內角 ,邊 .設內角B=x,△ABC的面積為y.
(1)求函數(shù)y=f(x)的解析式和定義域;
(2)當角B為何值時,△ABC的面積最大.

【答案】
(1)解:∵ ,且A+B+C=π

由正弦定理可得,

∴AC= =4sinx

y= sinA=4 sinxsin(


(2)解:y=4 sinxsin( )=

=

=3sin2x+2 ×

= + (﹣

即x= 時,y取得最大值3

∴B= 時,△ABC的面積最大為3


【解析】(1)由已知角A及三角形的內角和定理可求x的范圍,然后由正弦定理, 可利用x表示AC,代入三角形的面積公式,即可求解(2)利用兩角差的正弦公式及輔助角公式對(1)中的函數(shù)關系進行化簡,結合正弦函數(shù)的性質即可求解取得最大值時的x即B及相應的最大值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的左、右頂點分別為、,上、下頂點分別為、 為坐標原點,四邊形的面積為,且該四邊形內切圓的方程為

(Ⅰ)求橢圓的方程;

(Ⅱ)若是橢圓上的兩個不同的動點,直線的斜率之積等于,試探求的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次愛心捐款活動中,小李為了了解捐款數(shù)額是否和居民自身的經濟收入有關,隨機調査了某地區(qū)的個捐款居民每月平均的經濟收入. 在捐款超過元的居民中,每月平均的經濟收入沒有達到元的有個,達到元的有個;在捐款不超過元的居民中,每月平均的經濟收入沒有達到元的有.

(1)在下圖表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否超過元和居民毎月平均的經濟收入是否達到元有關?

(2)將上述調查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量居民中,采用隨機抽樣方法毎次抽取個居民,共抽取次,記被抽取的個居民中經濟收入達到元的人數(shù)為,求和期望的值.

每月平均經濟收入達到

每月平均經濟收入沒有達到

合計

捐款超過

捐款不超過

合計

附: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心在軸上的圓與直線切于點.

(1)求圓的標準方程;

(2)已知,經過原點,且斜率為正數(shù)的直線與圓交于兩點.

(。┣笞C: 為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個班級中進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于70分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班20個樣本中,化學分數(shù)前十的平均分,并大致判斷哪種教學方式的教學效果更佳;

(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“成績優(yōu)良與教學方式有關”?

附:參考公式: ,其中

臨界值表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一段圓錐曲線,曲線與兩個坐標軸的交點分別是, , .

Ⅰ)若該曲線表示一個橢圓,設直線過點且斜率是,求直線與這個橢圓的公共點的坐標.

Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,且cos(α﹣β)= ,sin(α+β)=﹣ ,求:cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學數(shù)學老師分別用兩種不同教學方式對入學數(shù)學平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為20人)進行教學(兩班的學生學習數(shù)學勤奮程度和自覺性一致),數(shù)學期終考試成績莖葉圖如下:

(1)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

附:參考公式及數(shù)據(jù)

(2)從兩個班數(shù)學成績不低于90分的同學中隨機抽取3名,設為抽取成績不低于95分同學人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,已知=3.

(1)求證:tan B=3tan A;

(2)若cos C,求A的值.

查看答案和解析>>

同步練習冊答案