已知角α的終邊經(jīng)過點(diǎn)P(-3,4).
(1)求sinα,cosα的值;
(2)求sin(π+α)+cos(-α)的值.
考點(diǎn):任意角的三角函數(shù)的定義,運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:(1)根據(jù)三角函數(shù)的定義即可求sinα,cosα的值;
(2)利用誘導(dǎo)公式進(jìn)行化簡即可求sin(π+α)+cos(-α)的值.
解答: 解:(1)∵角α的終邊經(jīng)過點(diǎn)P(-3,4).
∴r=5,
則sinα=
4
5
,cosα=-
3
5

(2)sin(π+α)+cos(-α)=-sinα+cosα=-
4
5
-
3
5
=-
7
5
點(diǎn)評(píng):本題主要考查三角函數(shù)的定義以及三角函數(shù)的求值,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα是方程5x2-12x-9=0的根,且α為第三象限角,求值:
sin(
2
-α)tan2(2π-α)
cos(
π
2
+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U=R,A={x|1≤x≤4},B={x|(x+2)(x-3)<0},C={x|m+1<x<2m-1}
(1)求A∪B,(CUA)∩B.
(2)若C⊆(A∪B),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在單調(diào)遞減的等比數(shù)列{an}中,a1=
1
16
,若
5
4
a2是a1,a3的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+…+log2an,求數(shù)列{
1
bn
}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 如圖是一個(gè)樣本數(shù)據(jù)的頻率分布直方圖,根據(jù)頻率分布直方圖,解答下列問題.
(Ⅰ)求圖中x的值;
(Ⅱ)根據(jù)直方圖,估計(jì)數(shù)據(jù)的眾數(shù)和平均數(shù)(寫出估計(jì)值、主要估計(jì)依據(jù)和方法);
(Ⅲ)已知分布在第一組中有10個(gè)數(shù)據(jù),求第三組和第四組數(shù)據(jù)個(gè)數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA垂直于矩形ABCD所在的平面,M,N分別是AB,PC的中點(diǎn),若∠PDA=45°,
(1)求證:MN∥平面PAD且MN⊥平面PCD.
(2)探究矩形ABCD滿足什么條件時(shí),有PC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,貨輪在海上以35nmile/h的速度沿著方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為148°的方向航行.為了確定船位,在B點(diǎn)觀察燈塔A的方位角是126°,航行半小時(shí)后到達(dá)C點(diǎn),觀察燈塔A的方位角是78°.求貨輪到達(dá)C點(diǎn)時(shí)與燈塔A的距離(精確到0.01nmile).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項(xiàng)為正的無窮數(shù)列{xn}滿足lnxn+
1
xn+1
<1(n∈N+),證明,xn≤1(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinπx
πx+π1-x
(x∈R).下列命題:
①函數(shù)f(x)既有最大值又有最小值;
②函數(shù)f(x)的圖象是軸對(duì)稱圖形;
③函數(shù)f(x)在區(qū)間[-π,π]上共有7個(gè)零點(diǎn);
④函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增.
其中真命題是
 
.(填寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案