考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)設(shè)出等比數(shù)列的公比,由
a
2是a
1,a
3的等差中項(xiàng)列式求得等比數(shù)列的公比q,則等比數(shù)列的通項(xiàng)公式可求;
(Ⅱ)利用對(duì)數(shù)的運(yùn)算性質(zhì)求出b
n,取倒數(shù)后由裂項(xiàng)相消法求得數(shù)列{
}的前項(xiàng)和T
n.
解答:
解:(Ⅰ)設(shè)單調(diào)遞減的等比數(shù)列{a
n}的公比為q(q<1),
由a
1=
,且
a
2是a
1,a
3的等差中項(xiàng),得
×q=+q2,
解得:q=2(舍)或q=
.
∴
an=×()n-1=;
(Ⅱ)b
n=log
2a
1+log
2a
2+…+log
2a
n=
log2(a1a2…an)=log2=
log22-=
-.
∴
=-=-(-).
則T
n=
-(1-+-+…+-)=
-(1+++…+---…-)=
-+(++…+).
點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的性質(zhì),訓(xùn)練了裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,是中檔題.