【題目】如圖,已知拋物線和⊙,過拋物線C上一點)做兩條直線與⊙相切于兩點,分別交拋物線于兩點.

1)當(dāng)的角平分線垂直軸時,求直線的斜率;

2)若直線軸上的截距為,求的最小值.

【答案】1)﹣;(2)﹣11

【解析】

1)根據(jù)當(dāng)的角平分線垂直軸時,可得點的坐標(biāo),因而,設(shè),由兩點間斜率公式及拋物線方程代入化簡可得,從而可求直線的斜率;

2)設(shè),由點斜式求出直線、的方程,根據(jù)直線性質(zhì)從而可得直線的方程,令,可得,再利用導(dǎo)函數(shù),即可求得的最小值.

1)拋物線和⊙,則,

∵當(dāng)的角平分線垂直軸時,可知點,

且滿足,設(shè),

∴由兩點間斜率公式可得,

∴代入拋物線方程可知,即

.

.

2)設(shè),,拋物線和⊙,則

∴由圓切線性質(zhì)可知,

∴直線的方程為,

同理可得直線的方程為,

,

∴直線的方程為,

,可得,(),

,

關(guān)于的函數(shù)在上單調(diào)遞增,

∴當(dāng)時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間之間坐標(biāo)系中,四棱錐的底面在平面上,其中點與坐標(biāo)原點重合,點軸上,,,頂點軸上,且,.

1)求直線與平面所成角的大。

2)設(shè)的中點,點上,且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的最小值為2,求的值;

2)當(dāng)時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得吸煙與患肺癌有關(guān)的結(jié)論,并且在犯錯誤的概率不超過0.01的前提下認(rèn)為這個結(jié)論是成立的,下列說法中正確的是(

A.100個吸煙者中至少有99人患有肺癌

B.1個人吸煙,那么這個人有99%的概率患有肺癌

C.100個吸煙者中一定有患肺癌的人

D.100個吸煙者中可能一個患肺癌的人也沒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校隨機(jī)抽取100名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不太主動參加班級工作

總計

學(xué)習(xí)積極性高

40

學(xué)習(xí)積極性一般

30

總計

100

已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到積極參加班級工作的學(xué)生的概率是0.6.

1)請將上表補(bǔ)充完整(不用寫計算過程);

2)試運(yùn)用獨立性檢驗的思想方法學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)?并說明理由.附:

0.050

0.010

0.001

K

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)圖象關(guān)于原點對稱,則由方程所確定;則正確命題序號為( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

10

7

13

(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?

(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.

①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;

②為了鼓勵市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達(dá)人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應(yīng)的概率.如下表:

紅包金額(單位:元)

10

20

概率

現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個結(jié)論:

①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;

②某學(xué)校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;

③線性相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強(qiáng);

④在回歸方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量增加0.5個單位.

其中正確的結(jié)論是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.若散點圖中的樣本點散布在從左下角到右上角的區(qū)域,則散點圖中的兩個變量的相關(guān)關(guān)系為負(fù)相關(guān)

B.殘差平方和越小的模型,擬合的效果越好

C.用相關(guān)指數(shù)來刻畫回歸效果,的值越小,說明模型的擬合效果越好

D.線性相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱

查看答案和解析>>

同步練習(xí)冊答案