【題目】若不等式|2x﹣1|﹣|x+a|≥a對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

【答案】D
【解析】解:﹣a< 時(shí),|2x﹣1|﹣|x+a|= ,x= 時(shí),最小值為﹣ ﹣a,
∵不等式|2x﹣1|﹣|x+a|≥a對(duì)任意的實(shí)數(shù)x恒成立,
∴﹣ ﹣a≥a,∴a≤﹣ ,
∴﹣ <a≤﹣ ;
﹣a= 時(shí),|2x﹣1|﹣|x+a|=|x﹣ |≥﹣ ,成立;
﹣a> 時(shí),同理可得x= 時(shí),|2x﹣1|﹣|x+a|最小值為 +a,
∵不等式|2x﹣1|﹣|x+a|≥a對(duì)任意的實(shí)數(shù)x恒成立,
+a≥a恒成立,∴a<﹣
綜上所述a≤﹣
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)直線軸, 軸分別交于兩點(diǎn),點(diǎn)是圓上任一點(diǎn),求兩點(diǎn)的極坐標(biāo)和面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問5分,2小問7分

圖,橢圓的左、右焦點(diǎn)分別為的直線交橢圓于兩點(diǎn),且

1求橢圓的標(biāo)準(zhǔn)方程

2求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈R,[x]表示不超過x的最大整數(shù),若函數(shù) 有且僅有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空間四邊形ABCD中,AB=CD且異面直線AB與CD所成的角為30°,E,F(xiàn)為BC和AD的中點(diǎn),則異面直線EF和AB所成的角為(
A.15°
B.30°
C.45°或75°
D.15°或75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},求不等式a(x2+1)+b(x﹣1)+c>2ax的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對(duì)應(yīng)值如下表:

x

y

﹣1

1

3

1

﹣1

1

3


(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個(gè)解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為 ,當(dāng) 時(shí),方程f(kx)=m恰有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)=x2﹣2x,g(x)=ax+2(a>0),若對(duì)任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),則a的取值范圍是(
A.
B.
C.[3,+∞)
D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)正中學(xué)新校區(qū)內(nèi)有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),?倓(wù)處計(jì)劃對(duì)其開發(fā)利用,其中弓形BCD區(qū)域(陰影部分)用于種植觀賞植物,△OBD區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。

1)設(shè)(單位:弧度),用表示弓形BCD的面積

2)如果該?倓(wù)處邀請(qǐng)你規(guī)劃這塊土地。如何設(shè)計(jì)的大小才能使總利潤最大?并求出該最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案