【題目】某次考試無紙化閱卷的評(píng)分規(guī)則的程序如圖所示,x1 , x2 , x3為三個(gè)評(píng)卷人對(duì)同一道題的獨(dú)立評(píng)分,p為該題的最終得分,當(dāng)x1=6,x2=9,p=8.5時(shí),x3=( )
A.11
B.10
C.8
D.7
【答案】C
【解析】解:根據(jù)提供的該算法的程序框圖,該題的最后得分是三個(gè)分?jǐn)?shù)中差距小的兩個(gè)分?jǐn)?shù)的平均分.
根據(jù)x1=6,x2=9,不滿足|x1﹣x2|≤2,故進(jìn)入循環(huán)體,輸入x3 , 判斷x3與x1 , x2哪個(gè)數(shù)差距小,差距小的那兩個(gè)數(shù)的平均數(shù)作為該題的最后得分.
因此由8.5= ,解出x3=8.
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用程序框圖的相關(guān)知識(shí)可以得到問題的答案,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有四個(gè)結(jié)論:
①若數(shù)列的前項(xiàng)和為 (為常數(shù)),則為等差數(shù)列;
②若數(shù)列是常數(shù)列,數(shù)列是等比數(shù)列,則數(shù)列是等比數(shù)列;
③在等差數(shù)列中,若公差,則此數(shù)列是遞減數(shù)列;
④在等比數(shù)列中,各項(xiàng)與公比都不能為.
其中正確的結(jié)論為__________(只填序號(hào)即可).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩名工人加工同一種零件,兩人每天加工的零件數(shù)相同,所得次品數(shù)分別為,,和的分布列如下表.
()分別求期望和.
()試對(duì)這兩名工人的技術(shù)水平進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對(duì)其30位親屬的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用如圖所示的莖葉圖表示他們的飲食指數(shù)(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).
(1)根據(jù)莖葉圖,幫助這位同學(xué)說明這30位親屬的飲食習(xí)慣.
(2)根據(jù)以上數(shù)據(jù)完成如下2×2列聯(lián)表.
(3)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2x的定義域是[2,16].設(shè)g(x)=f(2x)﹣[f(x)]2.
(1)求函數(shù)g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為常數(shù),函數(shù).
(1)當(dāng)時(shí),求關(guān)于的不等式的解集;
(2)當(dāng)時(shí),若函數(shù)在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),對(duì)于給定的,且,,證明:關(guān)于的方程在區(qū)間內(nèi)有一個(gè)實(shí)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a為實(shí)數(shù)).
(1)當(dāng)a=4時(shí),求函數(shù)y=g(x)在x=0處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)如果關(guān)于x的方程g(x)=2exf(x)在區(qū)間[ ,e]上有兩個(gè)不等實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com