20.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院的60人進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
患心肺疾病不患心肺疾病合計(jì)
m6
12n
合計(jì)60
已知在女病人中隨機(jī)抽取一人,抽到患心肺疾病的人的概率為$\frac{2}{5}$.
(1)求出m,n;
(2)探討是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明理由;
參考:
①臨界值表
P(k2>k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
②${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (1)由概率公式可知:$\frac{12}{12+n}$=$\frac{2}{5}$,即可求得n的值,由m=60-12-n-6,求得m的值;
(2)由(1)可知將2×2列聯(lián)表補(bǔ)充完整,據(jù)2×2列聯(lián)表,代入求臨界值的公式,求出觀測值,利用觀測值同臨界值表進(jìn)行比較,K2=10>7.879,可得有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān).

解答 解:(1)由題女性患者共12人,患有心肺疾病的概率為$\frac{2}{5}$,
∴$\frac{12}{12+n}$=$\frac{2}{5}$.
∴n=18,m=60-12-18-6=24,
故m=24,n=12;
(2)

患心肺疾病不患心肺疾病合計(jì)
24630
121830
合計(jì)362460
∵${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}=\frac{{60{{(24×18-6×12)}^2}}}{30×30×36×24}=10>7.789$,
∴有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān).

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為考察高中生的性別與喜歡數(shù)學(xué)課程之間的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行檢驗(yàn),經(jīng)計(jì)算K2=7.069,參考下表,則認(rèn)為“性別與喜歡數(shù)學(xué)有關(guān)”犯錯(cuò)誤的概率不超過(  )
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若一個(gè)球內(nèi)切于一個(gè)圓柱,則該圓柱的底面半徑R與母線l的關(guān)系是( 。
A.R=lB.l=2RC.l=$\frac{1}{2}$RD.l與R沒有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C的左、右焦點(diǎn)F1,F(xiàn)2在x軸上,左頂點(diǎn)為A,離心率e=$\frac{\sqrt{3}}{2}$,過原點(diǎn)O的直線(與x軸不重合)與橢圓C交于P,Q兩點(diǎn),直線PA,QA分別與y軸交于M,N兩點(diǎn),△PF1F2的周長為8+4$\sqrt{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$的值;
(Ⅲ)求四邊形MF1NF2面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=|lnx|,則函數(shù)y=f(x)-f(e-x)的零點(diǎn)的個(gè)數(shù)為(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.函數(shù)f(x)=|x-1|+|x-2|.
(1)求不等式f(x)<3的解集;
(2)不等式f(x)≤a(x+$\frac{1}{2}$)的解集非空,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.國內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3],若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”,根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運(yùn)動(dòng)達(dá)人’”進(jìn)行統(tǒng)計(jì),得到如表2×2列聯(lián)表.
運(yùn)動(dòng)時(shí)間
性別 
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
男生 36  
女生  26 
合計(jì)  100 
(1)請(qǐng)根據(jù)題目信息,將2×2類聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過計(jì)算判斷能否在犯錯(cuò)誤頻率不超過0.025的前提下認(rèn)為性別與“是否為‘運(yùn)動(dòng)達(dá)人’”有關(guān);
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查該校的3名男生,設(shè)調(diào)查的3人中運(yùn)動(dòng)達(dá)人的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).
附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某生產(chǎn)線上,質(zhì)量監(jiān)督員甲在生產(chǎn)現(xiàn)場時(shí),990件產(chǎn)品中有合格品982件,次品8件;不在生產(chǎn)現(xiàn)場時(shí),510件產(chǎn)品中有合格品493件,次品17件,試?yán)脠D形判斷監(jiān)督員甲不在生產(chǎn)現(xiàn)場對(duì)產(chǎn)品質(zhì)量好壞有無影響.能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為質(zhì)量監(jiān)督員甲在不在生產(chǎn)現(xiàn)場與產(chǎn)品質(zhì)量好壞有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.記Sk=1k+2k+3k+…+nk(n∈N*),當(dāng)k=1,2,3,…時(shí),觀察下列等式:
S1=$\frac{1}{2}$n2+$\frac{1}{2}$n,
S2=$\frac{1}{3}$n3+$\frac{1}{2}$n2+$\frac{1}{6}$n,
S3=$\frac{1}{4}$n4+$\frac{1}{2}$n3+$\frac{1}{4}$n2,
S4=$\frac{1}{5}$n5+$\frac{1}{2}$n4+An3-$\frac{1}{30}$n,
S5=$\frac{1}{6}$n6+$\frac{1}{2}$n5+$\frac{5}{12}$n4+Bn2
可以推測,A+B=$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案