0
|sinx|dx的值為( 。
A、0B、2C、4D、2π
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)積分的公式即可得到結(jié)論.
解答: 解:
0
|sinx|dx=2∫
 
π
0
sinxdx=2(-cosx)|
 
π
0
=4.
故選:C
點(diǎn)評:本題主要考查積分的計(jì)算,要求熟練積分的公式和運(yùn)算法則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知角A,B,C所對的邊分別為a,b,c,且a=3,c=8,B=60°,則△ABC的周長是( 。
A、18B、19C、16D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<x<0,sinx+cosx=
1
5

(1)求sinx-cosx的值;
(2)求3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示程序框圖中,如果輸入三個(gè)實(shí)數(shù)a、b、c,要求輸出這三個(gè)數(shù)中最小的數(shù),那么在空白的判斷框中,應(yīng)該填入下面四個(gè)選項(xiàng)中的( 。
A、c<xB、x<c
C、c<bD、b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、“x=-1”是“x2-5x-6=0”的必要不充分條件
C、命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D、命題“若x=y,則cosx=cosy”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<m<
1
2
,若
1
m
+
8
1-2m
≥k恒成立,則實(shí)數(shù)k的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量X是離散型隨機(jī)變量,X∽B(n,p)且EX=1.6,DX=1.28,則數(shù)對X~B(n,p)的取值為   ( 。
A、(8,0.2)
B、(5,0.32)
C、(7,0.45)
D、(4,0.4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
2
)-2+log84
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
2
+y2=1.
(Ⅰ)我們知道圓具有性質(zhì):若E為圓O:x2+y2=r2(r>0)的弦AB的中點(diǎn),則直線AB的斜率kAB與直線OE的斜率kOE的乘積kAB•kOE為定值.類比圓的這個(gè)性質(zhì),寫出橢圓C1的類似性質(zhì),并加以證明;
(Ⅱ)如圖(1),點(diǎn)B為C1在第一象限中的任意一點(diǎn),過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求三角形OCD面積的最小值;
(Ⅲ)如圖(2),過橢圓C2
x2
8
+
y2
2
=1上任意一點(diǎn)P作C1的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓C2上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案