2.統(tǒng)計(jì)某產(chǎn)品的廣告費(fèi)用x與銷售額y的一組數(shù)據(jù)如表:
廣告費(fèi)用x2356
銷售額y7m912
若根據(jù)如表提供的數(shù)據(jù)用最小二乘法可求得y對(duì)x的回歸直線方程是$\stackrel{∧}{y}$=1.1x+4.6,則數(shù)據(jù)中的m的值應(yīng)該是8.

分析 先求樣本中心點(diǎn),再代入回歸直線方程,即可求得m的值.

解答 解:由題意,$\overline{x}$=4,$\overline{y}$=7+$\frac{m}{4}$,
∵y對(duì)x的回歸直線方程是$\stackrel{∧}{y}$=1.1x+4.6,
∴7+$\frac{m}{4}$=4.4+4.6,∴m=8,
故答案為8.

點(diǎn)評(píng) 本題考查回歸直線方程,解題的關(guān)鍵是利用回歸直線方程恒過樣本中心點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)$y=sin({2x-\frac{π}{6}})$向右平移$\frac{π}{12}$個(gè)單位后得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間[a,b](b>a)上的值域是$[{-\frac{1}{2},1}]$,則b-a的最小值m和最大值M分別為( 。
A.$m=\frac{π}{6},M=\frac{π}{3}$B.$m=\frac{π}{3},M=\frac{2π}{3}$C.$m=\frac{4π}{3},M=2π$D.$m=\frac{2π}{3},M=\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點(diǎn))上一個(gè)動(dòng)點(diǎn),設(shè)$\overrightarrow{AP}=x\overrightarrow{AD},\overrightarrow{PB}•\overrightarrow{PC}=y$,對(duì)于函數(shù)y=f(x),給出以下三個(gè)結(jié)論:①當(dāng)a=2時(shí),函數(shù)f(x)的值域?yàn)閇1,4];②對(duì)于任意的a>0,均有f(1)=1;③對(duì)于任意的a>0,函數(shù)f(x)的最大值均為4.其中所有正確的結(jié)論序號(hào)為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+m(m為常數(shù)),則f(-1)=( 。
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2的直線與雙曲線的右支交于兩點(diǎn)A,B,若|AF1|:|AB|=3:4,且F2是AB的一個(gè)四等分點(diǎn),則雙曲線C的離心率是( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,設(shè)∠ABF=α,且
α∈[$\frac{π}{6}$,$\frac{π}{4}$],則該橢圓離心率e的取值范圍為( 。
A.[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$]B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{2}}{2}$,$\sqrt{3}$-1]D.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知在${({\root{3}{x}-\frac{1}{{2\root{3}{x}}}})^n}$的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(Ⅰ)求含x2的項(xiàng)的系數(shù);
(Ⅱ)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知P為曲線${C_1}:\frac{x^2}{12}+\frac{y^2}{4}=1$上的動(dòng)點(diǎn),直線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}-\frac{1}{2}t}\end{array}}\right.$(t為參數(shù))求點(diǎn)P到直線C2距離的最大值,并求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),過F2作垂直于實(shí)軸的直線PQ交雙曲線于P,Q兩點(diǎn),若∠PF1Q=$\frac{π}{2}$,則雙曲線的離心率e等于( 。
A.$\sqrt{2}$+2B.$\sqrt{2}$+1C.$\sqrt{2}$D.$\sqrt{2}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案