4.數(shù)列{an}為等比數(shù)列,若a3=-3,a4=6,則a6=( 。
A.-24B.12C.18D.24

分析 利用等比數(shù)列的通項公式及其性質(zhì)即可得出.

解答 解:設等比數(shù)列{an}的公比為q,∵a3=-3,a4=6,
∴q=$\frac{{a}_{4}}{{a}_{3}}$=-2,
則a6=${a}_{4}×{q}^{2}$=6×(-2)2=24.
故選:D.

點評 本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知集合A={x|y=$\sqrt{x-1}$+$\sqrt{2-x}$},B={y|y=2x,x≥a}
(Ⅰ)若a=2,求(∁UA)∩B;
(Ⅱ)若(∁UA)∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,則y的最大值為2,$\frac{y+1}{x+2}$的取值范圍是[$\frac{1}{3}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.樣本的數(shù)據(jù)如下:3,4,4,x,5,6,6,7,若該樣本平均數(shù)為5,則樣本方差為(  )
A.1.2B.1.3C.1.4D.1.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.命題p:?x∈R,ex≥1,寫出命題p的否定:?x∈R,ex<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,在平行六面體A1C中,AD=AB=AA1=4,∠A1AB=60°,∠BAD=90°,∠A1AD=120°,cos∠A1AC=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設直線3x+4y-5=0與圓C1:x2+y2=9交于A,B兩點,若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點在圓C1的劣弧AB上,則圓C2半徑的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)(ω>0)的最小正周期為2π,則f(-$\frac{π}{6}$)=( 。
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設命題p:?x∈R,x2+1>0,則¬p為( 。
A.$?{x_0}∈R,{x^2}+1>0$B.$?{x_0}∈R,{x^2}+1≤0$C.$?{x_0}∈R,{x^2}+1<0$D.$?{x_0}∈R,{x^2}+1≤0$

查看答案和解析>>

同步練習冊答案