分析 先根據(jù)圓C1的方程找出圓心坐標(biāo)與半徑R的值,找出圓C2的半徑的最大時(shí)的情況:當(dāng)圓c2的圓心Q為線段AB的中點(diǎn)時(shí),圓c2與圓C1相切,切點(diǎn)在圓C1的劣弧AB上,設(shè)切點(diǎn)為P,此時(shí)圓C2的半徑r的最大,利用距離公式求出兩圓心的距離OQ等于d,然后根據(jù)兩圓內(nèi)切時(shí),兩圓心之間的距離等于兩半徑相減可得圓C2的半徑最大值.
解答 解:由圓C1:x2+y2=9,可得圓心O(0,0),半徑R=3
如圖,當(dāng)圓c2的圓心Q為線段AB的中點(diǎn)時(shí),圓c2與圓C1相切,切點(diǎn)在圓C1的劣弧AB上,設(shè)切點(diǎn)為P,此時(shí)圓C2的半徑r的最大.
則兩圓心之間的距離OQ=d=$\frac{5}{\sqrt{{3}^{2}+{4}^{2}}}=1$.
因?yàn)閮蓤A內(nèi)切,所以圓c2的最大半徑r=3-d=3-1=2
故答案為:2
點(diǎn)評(píng) 此題考查學(xué)生掌握兩圓內(nèi)切時(shí)兩半徑所滿足的條件,靈活運(yùn)用韋達(dá)定理及兩點(diǎn)間的距離公式化簡(jiǎn)求值,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -24 | B. | 12 | C. | 18 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com