18.已知cosα=$-\frac{5}{13}$,角α是第二象限角,則tan(2π-α)等于( 。
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{12}{5}$D.-$\frac{12}{5}$

分析 由已知結(jié)合同角三角函數(shù)基本關(guān)系式求得sinα,再由誘導(dǎo)公式及同角三角函數(shù)的基本關(guān)系式求解.

解答 解:∵cosα=$-\frac{5}{13}$,角α是第二象限角,
∴sinα=$\sqrt{1-co{s}^{2}α}=\sqrt{1-(-\frac{5}{13})^{2}}=\frac{12}{13}$.
∴tan(2π-α)=-tanα=-$\frac{sinα}{cosα}=-\frac{\frac{12}{13}}{-\frac{5}{13}}=\frac{12}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)k∈Z,函數(shù)y=sin ($\frac{π}{4}$+$\frac{x}{2}$)cos ($\frac{π}{4}$+$\frac{x}{2}$)的單調(diào)增區(qū)間為( 。
A.[(k+$\frac{1}{2}$)π,(k+1)π]B.[(2k+1)π,2(k+1)π]C.[kπ,(k+$\frac{1}{2}$)π]D.[2kπ,(2k+1)π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在直三棱柱ABC-A1B1C1中,A1B1⊥B1C1,E、F分別是A1B、A1C的中點(diǎn).
求證:(1)EF∥平面ABC;
(2)平面A1FB1⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若10x=3,10y=4,則10x+y的值為(  )
A.700B.300C.400D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知遞增的等差數(shù)列{an}中,a2、a5是方程x2-12x+27=0的兩根,數(shù)列{an}為等比數(shù)列,b1=$\frac{2}{3},b_2+b_3=\frac{8}{27}$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=an•bn,數(shù)列{cn}的前n項(xiàng)和為Tn.求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)f(x)=ln(1+$\sqrt{{x}^{2}}$-x)在點(diǎn)x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在多面體ABCDPE中,四邊形ABCD和CDPE都是直角梯形,AB∥DC,∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F(xiàn)是CE的中點(diǎn).
(1)求證:BF∥平面ADP
(2)已知O是BD的中點(diǎn),求證:BD⊥平面AOF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,ABED是長(zhǎng)方形,平面ABED⊥平面ABC,AB=AC=5,BC=BE=6,且M是BC的中點(diǎn)
(Ⅰ) 求證:AM⊥平面BEC;
(Ⅱ) 求三棱錐B-ACE的體積;
(Ⅲ)若點(diǎn)Q是線段AD上的一點(diǎn),且平面QEC⊥平面BEC,求線段AQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=logax(a>0且a≠1),若f(x1x2…x2017)=8,則f(x12)+f(x22)+…+f(x20172)的值等于( 。
A.2loga8B.16C.8D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案