【題目】三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C為正方形,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且AC=2,AB= ,∠A1AB=45°,E、F分別為AA1、CC1的中點.

(1)求證:AA1⊥平面BEF;
(2)求二面角B﹣EB1﹣C1的余弦值.

【答案】
(1)證明: ,∠A1AB=45°,AE=1,故BE⊥AA1

又AA1∥BB1,故BE⊥BB1,又側(cè)面AA1B1B⊥側(cè)面BB1C1C

故BE⊥平面BB1C1C.EF∥AC,AC⊥AA1,EF⊥AA1,

故AA1⊥平面BEF


(2)解:以BF為x軸,BE為y軸,B1B為z軸,建立空間直角坐標系.

則E(0,1,0),B1(0,0,﹣2),

平面BEB1的法向量為 (1,0,0),

=(0,﹣1,﹣2), =( ,﹣1,﹣1),

設平面EB1C1的法向量 =(x,y,z),

,

取y=2,得 = ,

設二面角B﹣EB1﹣C1的平面角為θ,

則cosθ= = =

∴二面角B﹣EB1﹣C1的余弦值為


【解析】(1)推導出BE⊥AA1 , BE⊥BB1 , 從而BE⊥平面BB1C1C,由此能證明AA1⊥平面BEF.(2)以BF為x軸,BE為y軸,B1B為z軸,建立空間直角坐標系,利用向量法能求出二面角B﹣EB1﹣C1的余弦值.
【考點精析】通過靈活運用直線與平面垂直的判定,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】【2017江西南昌十所重點二!選修4—4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;

(Ⅲ)設是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有極值,且導函數(shù)的極值點是的零點。(極值點是指函數(shù)取極值時對應的自變量的值)

求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

證明:b>3a;

這兩個函數(shù)的所有極值之和不小于,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),前n和為Sn , 且Sn= (n∈N*).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設bn=an3n , 求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左焦點為,右頂點為,離心率為.已知是拋物線的焦點, 到拋物線的準線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設上兩點 關(guān)于軸對稱,直線與橢圓相交于點異于點),直線軸相交于點.若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設雙曲線與橢圓 =1有相同的焦點,且與橢圓相交,一個交點A的縱坐標為4,求:
(1)雙曲線的標準方程.
(2)若直線L過A(﹣1,2),且與雙曲線漸近線y=kx(k>0)垂直,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為 ,求a的值;
(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)y=sinx的圖象上所有點的橫坐標都縮小到原來的一半,縱坐標保持不變,再把圖象向左平移 個單位,這時對應于這個圖象的解析式為( )
A.y=cos2x
B.y=﹣sin2x
C.
D.

查看答案和解析>>

同步練習冊答案