19.已知等差數(shù)列{an}的前項(xiàng)和為Sn,若則a7+a17=25-S23,則a12等于( 。
A.-1B.-$\frac{25}{24}$C.1D.$\frac{25}{24}$

分析 利用等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式列出方程組得a1+11d=1,由此能求出a12

解答 解:∵等差數(shù)列{an}的前項(xiàng)和為Sn,a7+a17=25-S23,
∴${a}_{1}+6d+{a}_{1}+16d=25-(23{a}_{1}+\frac{23×22}{2}d)$,
整理,得a1+11d=1,
∴a12=a1+11d=1.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的第12項(xiàng)的求法,考查等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又零點(diǎn)個(gè)數(shù)最多的是( 。
A.y=-x3-1,x∈RB.y=x+$\frac{1}{x}$,x∈R,且x≠0
C.y=-x3-x,x∈RD.y=-x3(x2-1),x∈R,且x≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若三個(gè)正數(shù)a,b,c成等比數(shù)列,其中a=5+2$\sqrt{6}$,c=5-2$\sqrt{6}$,則b=( 。
A.$\frac{1}{2}$B.1C.5D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.假設(shè)某次數(shù)學(xué)測(cè)試共有20道選擇題,每個(gè)選擇題都給了4個(gè)選項(xiàng)(其中有且僅有一個(gè)選項(xiàng)是正確的).評(píng)分標(biāo)準(zhǔn)規(guī)定:每題只選1項(xiàng),答對(duì)得5分,否則得0分.某考生每道題都給出了答案,并且會(huì)做其中的12道題,其他試題隨機(jī)答題,則他的得分X的方差D(X)=$\frac{75}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(1,1),($\overrightarrow{a}$+λ$\overrightarrow$)⊥$\overrightarrow$,則λ等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(sinx-cosx)2+$\sqrt{3}$sin(2x+$\frac{3π}{2}$)(x∈R).
(1)求函數(shù)f(x)的遞減區(qū)間;
(2)若f(α)=$\frac{3}{13}$,α∈($\frac{π}{12}$,$\frac{π}{2}$),求cos(2α+$\frac{7π}{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$(2,x),若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$垂直,則實(shí)數(shù)x的值是( 。
A.-4B.-2C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sinx-x,則不等式f(x+1)+f(2-2x)>0的解集是(  )
A.(-∞,$-\frac{1}{3}$)B.($-\frac{1}{3}$,+∞)C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線y2=4px(p>0)上一點(diǎn)M到該拋物線焦點(diǎn)F的距離|MF|=3p,則直線MF的斜率為( 。
A.±2$\sqrt{2}$B.±1C.±$\sqrt{3}$D.±$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案