12.△ABC中,B=45°,b=x,a=2,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,2$\sqrt{2}$)D.($\sqrt{2}$,2)

分析 根據(jù)題意,在△ABC中結(jié)合正弦定理可得x=$\frac{\sqrt{2}}{sinA}$,又△ABC有兩解,可得sinA的范圍,進(jìn)而計(jì)算可得答案.

解答 解:根據(jù)題意,△ABC中,B=45°,b=x,a=2,
則x=$\frac{a•sinB}{sinA}$=$\frac{\sqrt{2}}{sinA}$,
又△ABC有兩解,則A>45°,即$\frac{\sqrt{2}}{2}$<sinA<1,
故$\sqrt{2}$<x<2,即x的取值范圍為($\sqrt{2}$,2);
故選:D.

點(diǎn)評(píng) 本題考查正弦定理的應(yīng)用,要求判斷三角形存在個(gè)數(shù)的條件,注意運(yùn)用數(shù)形結(jié)合思想,作出三角形的圖形進(jìn)行分析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.雙曲線(xiàn)$\frac{x^2}{m+1}$+$\frac{y^2}{1-2m}$=1的焦點(diǎn)在y軸上,則m的取值范圍是(  )
A.m<-1B.$-1<m<\frac{1}{2}$C.$m<\frac{1}{2}$D.$m>\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知命題p:函數(shù)f(x)=$\frac{1}{3}$mx3+x2+x在區(qū)間(1,2)上單調(diào)遞增;命題q:函數(shù)g(x)=4ln(x+1)+$\frac{1}{2}$x2-(m-1)x的圖象上任意一點(diǎn)處的切線(xiàn)斜率恒大于1,若“p∨(¬q)”為真命題,“(¬p)∨q”也為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位后與函數(shù)y=cos($\frac{π}{2}$-2x)的圖象重合,則y=f(x)的解析式為( 。
A.y=sin(2x-$\frac{π}{2}$)B.y=sin(2x+$\frac{π}{6}$)C.y=sin(2x+$\frac{π}{3}$)D.y=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.等差數(shù)列{an}中,a4=20,a6=12,則{an}的前9項(xiàng)和S9=144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.$\underset{lim}{n→∞}$($\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{n(n+1)(n+2)}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,將邊長(zhǎng)為$\sqrt{2}$的正方形ABCD沿對(duì)角線(xiàn)BD折起,使得AC=1,則三棱錐A-BCD的體積為(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥0\end{array}\right.$,則z=2x+y最大值為( 。
A.0B.1C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,-2m),則“m=1”是“$\overrightarrow{a}$⊥$\overrightarrow$”的充分不必要條件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)

查看答案和解析>>

同步練習(xí)冊(cè)答案