已知雙曲線C:=1的左右焦點分別為F1,F(xiàn)2,P為C的右支上一點,且|PF2|=|F1F2|,則△PF1F2的面積等于( )
A.24
B.36
C.48
D.96
【答案】分析:先根據(jù)雙曲線方程求出焦點坐標,再利用雙曲線的額性質求得||PF1|,作PF1邊上的高AF2則可知AF1的長度,進而利用勾股定理求得AF2,則△PF1F2的面積可得.
解答:解:∵雙曲線中a=3,b=4,c=5,
∴F1(-5,0),F(xiàn)2(5,0)
∵|PF2|=|F1F2|,
∴|PF1|=2a+|PF2|=6+10=16
作PF1邊上的高AF2,則AF1=8,

∴△PF1F2的面積為
故選C.
點評:此題重點考查雙曲線的第一定義,雙曲線中與焦點,準線有關三角形問題;由題意準確畫出圖象,利用數(shù)形結合,注意到三角形的特殊性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

 (2012年高考湖南卷理科5)已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A.-=1  B.-=1  C.-=1    D.-=1

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖南邵陽石齊學校高二第三次月考理科數(shù)學試卷(解析版) 題型:選擇題

 已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為(   )

A. -=1  B. -=1  C. -=1    D. -=1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(湖南卷解析版) 題型:選擇題

已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A、-=1  B、-=1  C、-=1    D、-=1[w~#

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(湖南卷解析版) 題型:選擇題

已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A、-=1  B、-=1  C、-=1    D、-=1  

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市電子科大實驗中學高三(上)10月月考數(shù)學試卷3(解析版) 題型:選擇題

已知雙曲線C:-=1的焦距為10,點P (2,1)在C 的漸近線上,則C的方程為( )
A.-=1
B.-=1
C.-=1
D.-=1

查看答案和解析>>

同步練習冊答案