【題目】設集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是單元素集合,若存在a<0,b<0使點P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},則點P所在的區(qū)域的面積為

【答案】2π
【解析】解:集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是一個單元素集合, ∴直線和拋物線相切,
∴由x2+2bx+1=2a(x+b),即x2+2(b﹣a)x+1﹣2ab=0,有相等的實根,所以△=0即a2+b2=1,
∵存在a<0,b<0,P={(x,y)|(x﹣a)2+(y﹣b)2≤1},
∴圓心在以原點為圓心,以1為半徑的圓上的一部分(第三象限)
∴如圖所示,集合P中圓的邊界的移動是半徑為1的圓的邊界的移動就是沿著那個半徑為2的那個 圓弧上,
∴集合P的面積=半徑為1小圓的面積+半徑為2大圓的面積的 ,
∴集合C的面積=π+π=2π,
所以答案是:2π.

【考點精析】認真審題,首先需要了解定積分的概念(定積分的值是一個常數(shù),可正、可負、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=lnx﹣ax2+(2﹣a)x,a∈R.
(1)求g(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)=g(x)+(a+1)x2﹣2x,x1 , x2(x1<x2)是函數(shù)f(x)的兩個零點,f′(x)是函數(shù)f(x)的導函數(shù),證明:f′( )<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

附:回歸直線的斜率和截距的最小二乘估計公式分別為:
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2017年農(nóng)村居民家庭人均純收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—5:不等式選講
已知 = ).
(Ⅰ)當 時,解不等式
(Ⅱ)若不等式 恒成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)設bn= +1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(3)對任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項構成等差數(shù)列?若存在,寫出這2m項,并證明這2m項構成等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項a1 , a2 , …,an(n∈N*)組成集合An={a1 , a2 , …,an},從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),例如:對于數(shù)列{2n﹣1},當n=1時,A1={1},T1=1;n=2時,A2={1,3},T1=1+3,T2=13;
(1)若集合An={1,3,5,…,2n﹣1},求當n=3時,T1 , T2 , T3的值;
(2)若集合An={1,3,7,…,2n﹣1},證明:n=k時集合Ak的Tm與n=k+1時集合Ak+1的Tm(為了以示區(qū)別,用Tm′表示)有關系式Tm′=(2k+1﹣1)Tm1+Tm , 其中m,k∈N*,2≤m≤k;
(3)對于(2)中集合An . 定義Sn=T1+T2+…+Tn , 求Sn(用n表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足 ,若n∈N*時,anbn+1﹣bn+1=nbn
(Ⅰ)求{bn}的通項公式;
(Ⅱ)設cn=anbn , 求{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z=x+yi(x,y∈R)滿足 ,則y≥x﹣1的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義f(x)={x}(其中{x}表示不小于x的最小整數(shù))為“取上整函數(shù)”,例如{2.1}=3,{4}=4.以下關于“取上整函數(shù)”性質(zhì)的描述,正確的是( ) ①f(2x)=2f(x);
②若f(x1)=f(x2),則x1﹣x2<1;
③任意x1 , x2∈R,f(x1+x2)≤f(x1)+f(x2);

A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

同步練習冊答案