已知f(x)定義在(0,+∞)上的非負可導函數(shù),且滿足xf'(x)-f(x)≥0,對于任意的正數(shù)a,b,若a<b,①af(b)≤bf(a);②af(b)≥bf(a);③af(a)≤bf(b);④af(a)≥bf(b).其中正確的是( 。
分析:分別構建函數(shù)g(x)=xf(x),h(x)=
f(x)
x
,利用xf'(x)-f(x)≥0,確定它們的單調性,從而可得結論.
解答:解:構造函數(shù)g(x)=xf(x)
∴g′(x)=xf'(x)+f(x)
∵xf'(x)-f(x)≥0,
∴g′(x)≥2f(x)≥0
∴g(x)在(0,+∞)上為單調增函數(shù)
∵a<b,
∴g(a)<g(b)
∴af(a)≤bf(b)
構造函數(shù)h(x)=
f(x)
x

h′(x)=
xf′(x)-f(x)
x2

∵xf'(x)-f(x)≥0,
∴h′(x)≥0
∴h(x)在(0,+∞)上為單調增函數(shù)
∵a<b,
∴h(a)<h(b)
f(a)
a
f(b)
b

∴af(b)≥bf(a)
∴②③正確
故選D.
點評:本題重點考查導數(shù)知識的運用,考查函數(shù)的單調性,考查利用函數(shù)的單調性,建立不等關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)定義在R上的函數(shù),對于任意的實數(shù)a,b都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f(
12
)的值
(2)求f(2-n)的解析式(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)定義在(0,+∞)上的非負可導函數(shù),且滿足xf′(x)-f(x)≥0,對于任意的正數(shù)a,b,若a<b,
①af(b)≤bf(a)
②af(b)≥bf(a)
③af(a)≤bf(b)
④af(a)≥bf(b)
其中正確的是
②③
②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)定義在R上以2為周期的偶函數(shù),當x∈[0,1]時,f(x)=x,若關于x的方程f(x)=kx+k+1(其中k常數(shù))有4個不同的實數(shù)根,則k的取值范圍是
(-
1
3
,-
1
5
)∪(
1
5
,
1
3
)
(-
1
3
,-
1
5
)∪(
1
5
,
1
3
)

查看答案和解析>>

科目:高中數(shù)學 來源:2009年高考數(shù)學壓軸試卷集錦(10)(解析版) 題型:解答題

已知f(x)定義在R上的函數(shù),對于任意的實數(shù)a,b都有f(ab)=af(b)+bf(a),且f(2)=1.
(1)求f()的值
(2)求f(2-n)的解析式(n∈N*

查看答案和解析>>

同步練習冊答案