9.設(shè)f(n)=2+24+27+210+…+23n+13(n∈N*),則f(n)等于$\frac{2}{7}$(8n+5-1).

分析 首先根據(jù)題意分析出f(n)是首項(xiàng)為2,公比為8的等比數(shù)列的前n+5項(xiàng)和,然后由等比數(shù)列前n項(xiàng)和公式求之即可.

解答 解:數(shù)列2、24、27、210、…23n+13是首項(xiàng)為2,公比為23=8的等比數(shù)列,
所以$f(n)=2+{2^4}+{2^7}+…+{2^{3n+13}}=\frac{{2(1-{8^{n+5}})}}{1-8}=\frac{2}{7}({8^{n+5}}-1)$.
故答案是:$\frac{2}{7}$(8n+5-1).

點(diǎn)評(píng) 本題主要考查等比數(shù)列的定義及前n項(xiàng)和公式,解決本題的關(guān)鍵是弄清數(shù)列的項(xiàng)數(shù),屬于易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知雙曲線C與雙曲線$\frac{{x}^{2}}{3}$-y2=1有公共焦點(diǎn),且過點(diǎn)(2,$\sqrt{2}$).求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2x-$\sqrt{1-x}$的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,2)B.[2,+∞)C.(2,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當(dāng)曲線y=$\sqrt{4-{x}^{2}}$與直線kx-y-2k+4=0有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,真命題的個(gè)數(shù)是( 。﹤(gè).
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=x2-2ax+3在[2,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[2,+∞)B.(-∞,2]C.[4,+∞)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,b=3,c=3$\sqrt{3}$,B=30°,則a=(  )
A.6B.3C.6或3D.6或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC中,A=60°,B=45°,a=10,則b的值( 。
A.5$\sqrt{2}$B.10$\sqrt{2}$C.$\frac{10\sqrt{6}}{3}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)g(x)=alnx,對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,則實(shí)數(shù)a的取值范圍是a≤-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案