設(shè)f(x)是[-1,1]上的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則f(-
1
2
)=( 。
A、-
1
2
B、-
1
4
C、
1
4
D、
1
2
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用奇函數(shù)的性質(zhì)即可得出.
解答: 解:∵當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),
f(
1
2
)
=
1
2
×(1-
1
2
)
=
1
2

∵f(x)是[-1,1]上的奇函數(shù),
∴f(-
1
2
)=-f(
1
2
)
=-
1
2

故選:A.
點(diǎn)評(píng):本題考查了奇函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax(a∈R).
(I)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+1=0垂直,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)若a=1,函數(shù)b≠0,函數(shù)g(x)=
1
3
bx3-bx,如果對(duì)任意的x1∈(1,2),總存在x2∈(1,2),使得f(x1)=g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2=
1
4
,a5=
1
32

(1)試求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:bn=
n
an
(n∈N*),試求{Bn}的前n項(xiàng)和公式Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)y=
1
x
+x在區(qū)間[-2,-1)上的單調(diào)性,并用定義證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x)…fn+1(x)=fn′(x),x∈N*  則f2015
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a1=3,a3=9,若ak=243,則k等于(  )
A、79B、80C、81D、82

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集為R,函數(shù)f(x)=
1-x2
的定義域?yàn)镸,則∁RM=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x
, x≥0
(
1
2
)x, x<0
,則f(f(-2))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=(m2-3m+3)•xm+1為偶函數(shù),則m=( 。
A、1B、2C、1或2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案