已知實數(shù)x,y滿足|x|+|y|=5,則x2+y2-2x的最小值是( 。
A、
15
2
B、8
C、7
D、6
考點:兩點間距離公式的應(yīng)用
專題:直線與圓
分析:易得點(x,y)在四條直線x+y=5,x-y=5,-x+y=5,-x-y=5所圍成的正方形框上(邊界),x2+y2-2x表示點(x,y)到(1,0)距離平方減掉1,由點到直線的距離公式可得.
解答: 解:∵實數(shù)x,y滿足|x|+|y|=5,
∴點(x,y)在四條直線x+y=5,x-y=5,-x+y=5,-x-y=5所圍成的正方形框上(邊界),
配方可得x2+y2-2x=(x-1)2+y2-1表示點(x,y)到(1,0)距離平方減掉1,
可得(1,0)到(x,y)的距離最小值為(1,0)到直線x+y=5的距離d,
由點到直線的距離公式可得d=
|1+0-5|
12+12
=2
2
,
∴所求最小值為(2
2
2-1=7
故選:C
點評:本題考查點到直線的距離公式和兩點間的距離公式,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于非零向量
α
β
,定義一種向量積:
α
β
=
α
β
β
β
.已知非零向量
a
,
b
的夾角θ,∈(0,
π
4
),且
a
b
b
a
都在集合{
n
2
|n∈Z}中.則
a
b
=(  )
A、
5
2
,
3
2
B、
1
2
,
3
2
C、
5
2
,
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2,為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的焦距是4
3
,則橢圓的方程為(  )
A、
x2
4
+
y2
3
=1
B、
x2
16
+
y2
3
=1
C、
x2
16
+
y2
12
=1
D、
x2
16
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)變量x,y滿足約束條件
x+2y≤2
2x+y≥4
y≥-2
,則目標函數(shù)z=-x-y的最大值為( 。
A、0B、-2C、-4D、-l

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C對邊分別是a,b,c,已知c=1,C=
π
3

(1)若cos(θ+C)=
5
13
,0<θ<π,求cosθ的值.
(2)若sinC+sin(A-B)=3sin2B,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
,
c
為非零向量且
a
b
,x∈R,x1,x2方程
a
x2
+
b
x+
c
=
0
的兩實根,比較大。簒1
 
 x2(填寫>,<,=).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x2+2ax+a+2≤0,若命題p是假命題,則實數(shù)a的取值范圍是( 。
A、(-2,1)
B、[-1,2]
C、(-1,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等腰直角三角形ACB中∠C=90°,CA=CB=a,點P在AB上,且
.
AP
.
AB
(0≤λ≤1),則
.
CA
.
CP
的最大值為
( 。
A、a
B、a2
C、2a
D、
2
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}為各項均為1的無窮數(shù)列,若在數(shù)列{an}的首項a1后面插入1,隔2項,即a3后面插入2,再隔3項,即a6后面插入3,…這樣得到一個新數(shù)列{bn},則數(shù)列{bn}的前2010項的和為
 

查看答案和解析>>

同步練習冊答案