點(diǎn)P(2,5)與圓x2+y2=24的位置關(guān)系是( 。
A、在圓外B、在圓內(nèi)
C、在圓上D、不確定
考點(diǎn):點(diǎn)與圓的位置關(guān)系
專(zhuān)題:直線(xiàn)與圓
分析:點(diǎn)P到圓心的距離大于半徑?點(diǎn)在圓外;點(diǎn)P到圓心的距離等于半徑?點(diǎn)在圓上;點(diǎn)P到圓心的距離小于半徑?點(diǎn)到圓內(nèi).
解答: 解:圓x2+y2=24的圓心O(0,0),半徑r=2
6

∵點(diǎn)P(2,5)與圓心O(0,0)的距離:
|OP|=
22+52
=
29
>r=2
6
,
∴點(diǎn)P在圓外.
故選:A.
點(diǎn)評(píng):本題考查點(diǎn)與圓的位置關(guān)系的判斷,是基礎(chǔ)題,由點(diǎn)到圓心的距離和圓半徑的大小關(guān)系進(jìn)行判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x-
1
2x
)4
的展開(kāi)式中常數(shù)項(xiàng)為( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果點(diǎn)P在以F為焦點(diǎn)的拋物線(xiàn)x2=2y上,且∠POF=60°(O為原點(diǎn)),那么△POF的面積是( 。
A、
3
B、
3
2
C、
3
6
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
2
+y2=1
,則該橢圓的離心率為(  )
A、
1
2
B、
2
2
C、
3
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A={x|x2≥4},B={x|2x=
1
4
}
,則A∩B=( 。
A、{2}
B、(-∞,-2]
C、[2,+∞)
D、{-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體共一頂點(diǎn)的三條棱長(zhǎng)分別為
2
,
3
,2,則這個(gè)長(zhǎng)方體外接球的體積為(  )
A、
3
π
2
B、
2
C、3π
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)y2=4x上的點(diǎn)M(x0,y0)到焦點(diǎn)F的距離為5,則x0的值為( 。
A、1B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線(xiàn)y=f(x)在點(diǎn)(xn,f(xn))處的切線(xiàn)與x軸的交點(diǎn)為(xn+1,0),其中x1為正實(shí)數(shù),n∈N*
(1)用xn表示xn+1
(2)若x1=4,記an=lg
xn+2
xn-2
(n∈N*)
,試判斷數(shù)列{an}是否是等比數(shù)列,若是求出其公比;若不是,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,設(shè)bn=
(2n+5)lg3
2(2n+1)(2n+3)an
,數(shù)列{bn}的前n項(xiàng)和為Sn,證明:
7
30
Sn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1
(Ⅰ) 求證:AB1⊥平面A1BC1;
(Ⅱ) 若D為B1C1的中點(diǎn),求AD與平面A1BC1所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案