已知函數(shù)y=xf′(x)的圖象如圖所示(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則以下說法錯(cuò)誤的是(  )
A、f′(1)+f′(-1)=0
B、當(dāng)x=-1時(shí),函數(shù)f(x)取得極大值
C、方程xf'(x)=0與f(x)=0均有三個(gè)實(shí)數(shù)根
D、當(dāng)x=1時(shí),函數(shù)f(x)取得極小值
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)函數(shù)y=xf′(x)的圖象,依次判斷f(x)在區(qū)間(-∞,-1),(-1,0),(0,1),(1,+∞)上的單調(diào)性畫出函數(shù)f(x)的大致圖象,從而可以得到正確答案.
解答: 解:由函數(shù)y=xf′(x)的圖象可知:
當(dāng)x<-1時(shí),xf′(x)<0,f′(x)>0,此時(shí)f(x)增
當(dāng)-1<x<0時(shí),xf′(x)>0,f′(x)<0,此時(shí)f(x)減
當(dāng)0<x<1時(shí),xf′(x)<0,f′(x)<0,此時(shí)f(x)減
當(dāng)x>1時(shí),xf′(x)>0,f′(x)>0,此時(shí)f(x)增.
綜上所述,函數(shù)f(x)大致圖象是,
故f′(1)=0,f′(-1)=0,所以A、B、D正確;
故選C.
點(diǎn)評(píng):本題間接利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)的圖象問題.本題有一定的代表性,是一道好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-|x-2|-4≤0},B={x|x2-(2m+1)x+2m<0}.
(Ⅰ)化簡(jiǎn)集合A;
(Ⅱ)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x+
π
6
)=
1
4
,x∈[
π
2
,π],求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義max[a,b]=
a,a≥b
b,a<b
,f(x)=max[(x-2)2,|x|],則f(x)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=a、x=b是函數(shù)f(x)=lnx+
1
2
x2
-(m+2)x(m∈R)的兩個(gè)極值點(diǎn),若
b
a
≥4.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)求f(b)-f(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面為菱形,PD⊥底面ABCD.
(1)求證:△PAB≌△PCB;
(2)求證:AC⊥PB;
(3)若PD=2
2
,AB=
5
,二面角A-BP-C為120°,求四菱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
cosx-
3
,sinx),
b
=(1+cosx,cosx),設(shè)f(x)=
a
b
,求:
(1)f(x)的解析式并簡(jiǎn)化;
(2)求函數(shù)f(x)在區(qū)間[0,
π
6
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,并且經(jīng)過定點(diǎn)P(
3
1
2
).
(Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=-x+m,使直線與橢圓交于A、B兩點(diǎn),滿足
OA
OB
=
12
5
,若存在求m值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x|x-2|.
(1)求y=f(x)的解析式.
(2)若函數(shù)y=a與函數(shù)y=f(x)有6個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案