9.下列各角中與-$\frac{π}{4}$終邊相同的是(  )
A.-$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{7π}{4}$D.$\frac{3π}{4}$

分析 根據(jù)終邊相同的角之間相差周角的整數(shù)倍,我們可以表示出與-$\frac{π}{4}$的角終邊相同的角α的集合,分析題目中的四個(gè)答案,找出是否存在滿足條件的k值,即可得到答案.

解答 解:與-$\frac{π}{4}$的角終邊相同的角α的集合為{α|α=-$\frac{π}{4}$+2kπ,k∈Z}
當(dāng)k=1時(shí),α=$\frac{7π}{4}$,
故選:C.

點(diǎn)評 本題考查的知識(shí)點(diǎn)是終邊相同的角,其中根據(jù)終邊相同的角之間相差周角的整數(shù)倍,表示出與-$\frac{π}{4}$的角終邊相同的角α的集合,是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)拋物線y2=4x上的一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(m,m+1),$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)m的值為(  )
A.1B.-1C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.關(guān)于平面向量,給出下列四個(gè)命題:
①單位向量的模都相等;
②對任意的兩個(gè)非零向量$\overrightarrow{a}$,$\overrightarrow$,式子|$\overrightarrow{a}$+$\overrightarrow$|<|$\overrightarrow{a}$|+|$\overrightarrow$|一定成立;
③兩個(gè)有共同的起點(diǎn)且相等的向量,其終點(diǎn)必定相同;
④若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$.
其中正確的命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩平面向量,且|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{1}}$|=1,<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=60°.
(1)若$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{1}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$-6$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,求證:A,B,D三點(diǎn)共線;
(2)若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{\;}}$2,$\overrightarrow$=λ$\overrightarrow{{e}_{\;}}$1-$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$⊥$\overrightarrow$,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個(gè)盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個(gè),從中摸出1個(gè)球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或白球的概率是( 。
A.0.3B.0.55C.0.75D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π)
(1)tan(α+π)的值;
(2)cos(α-$\frac{π}{2}$)sin(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<α<$\frac{π}{2}$,-π<β<-$\frac{π}{2}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=-$\frac{\sqrt{3}}{3}$,則cos(α+$\frac{β}{2}$)=( 。
A.-$\frac{5\sqrt{3}}{9}$B.$\frac{5\sqrt{3}}{9}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了了解高三學(xué)生的數(shù)學(xué)成績,抽取了某班60名學(xué)生,將所得數(shù)據(jù)整理后,畫出如圖所示的頻率分布直方圖,已知從左到右各長方形高的比為2:3:5:6:3:1,則該班學(xué)生數(shù)學(xué)成績在[100,120]之間的學(xué)生人數(shù)是( 。
A.32B.24C.18D.12

查看答案和解析>>

同步練習(xí)冊答案