科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:選擇題
x為實數(shù),[x]表示不超過x的最大整數(shù),則函數(shù)f(x)=x-[x]在R上為( )
A.奇函數(shù) B.偶函數(shù)
C.增函數(shù) D.周期函數(shù)
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:選擇題
已知偶函數(shù)f(x)當x∈[0,+∞)時是單調遞增函數(shù),則滿足f()<f(x)的x的取值范圍是( )
A.(2,+∞) B.(-∞,-1)
C.[-2,-1)∪(2,+∞) D.(-1,2)
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:選擇題
函數(shù)f(x)的圖象向右平移1個單位長度,所得圖象與曲線y=ex關于y軸對稱,則f(x)=( )
A.ex+1 B.ex-1
C.e-x+1 D.e-x-1
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:選擇題
定義在R上的函數(shù)的圖象關于點成中心對稱,且對任意的實數(shù)x都有f(x)=-f,f(-1)=1,f(0)=-2,則f(1)+f(2)+…+f(2013)=( )
A.0 B.-2
C.1 D.-4
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:選擇題
已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B=( )
A.16 B.-16
C.a2-2a-16 D.a2+2a-16
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:填空題
若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實數(shù)a=________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:填空題
設函數(shù)f(x)=若f(x)是奇函數(shù),則g(3)=________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:填空題
對于定義在R上的函數(shù)f(x)有以下五個命題:
①若y=f(x)是奇函數(shù),則y=f(x-1)的圖象關于A(1,0)對稱;
②若對于任意x∈R,有f(x-1)=f(x+1),則f(x)關于直線x=1對稱;
③函數(shù)y=f(x+1)與y=f(1-x)的圖象關于直線x=1對稱;
④如果函數(shù)y=f(x)滿足f(x+1)=f(1-x),f(x+3)=f(3-x),那么該函數(shù)以4為周期.
其中正確命題的序號為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=x2+(x≠0,a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com