相關(guān)習(xí)題
 0  213599  213607  213613  213617  213623  213625  213629  213635  213637  213643  213649  213653  213655  213659  213665  213667  213673  213677  213679  213683  213685  213689  213691  213693  213694  213695  213697  213698  213699  213701  213703  213707  213709  213713  213715  213719  213725  213727  213733  213737  213739  213743  213749  213755  213757  213763  213767  213769  213775  213779  213785  213793  266669 

科目: 來(lái)源: 題型:

觀察下列算式:
1=1,
3+5=8,
7+9+11=27,
13+15+17+19=64,
21+23+25+27+29=125,

猜測(cè)第n行的式子為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

為了加強(qiáng)食品安全管理,某市質(zhì)監(jiān)局?jǐn)M招聘專(zhuān)業(yè)技術(shù)人員x名,行政管理人員y名,若x,y∈N+,且滿(mǎn)足
y≤x
y≤-x+4
,則z=2x+3y
的最大值為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖1,在正三角形ABC中,已知AB=5,E、F、P分別是AB、AC、BC邊上的點(diǎn),設(shè)AE=2x,CF=CP=x,0<x<
5
2
,將△ABC沿EF折起到△A1EF的位置,使二面角A1-EF-B的大小為
π
2
,連接A1B、A1P(如圖2).
(1)求證:PF∥平面A1EB;
(2)若EF⊥平面A1EB,求x的值;
(3)當(dāng)EF⊥平面A1EB時(shí),求平面A1BP與平面A1EF所成銳二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,點(diǎn)P(2,
4
) 到直線ρcos(θ-
π
4
)=
2
的距離等于
 

查看答案和解析>>

科目: 來(lái)源: 題型:

在直角坐標(biāo)平面xoy中,已知點(diǎn)F1(-5,0)與點(diǎn)F2(5,0),點(diǎn)P為坐標(biāo)平面xoy上的一個(gè)動(dòng)點(diǎn),直線PF1與PF2的斜率kPF1KPF2都存在,且kPF1kPF2=λ,λ為一個(gè)常數(shù).
(1)求動(dòng)點(diǎn)P的軌跡T的方程,并說(shuō)明軌跡T是什么樣的曲線.
(2)設(shè)A、B是曲線T上關(guān)于原點(diǎn)對(duì)稱(chēng)的任意兩點(diǎn),點(diǎn)C為曲線T上異于點(diǎn)A、B的另一任意點(diǎn),且直線AC與BC的斜率kAC與kBC都存在,若kACkBC=-
9
25
,求常數(shù)λ的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,sin
x
2
),且x∈[-
π
6
,
π
3
]

(1)求
a
b
及|
a
+
b
|
;
(2)若f(x)=
a
b
-|
a
+
b
|,求f(x)
的值域.

查看答案和解析>>

科目: 來(lái)源: 題型:

集合A={x∈R|0<x≤2},B={x∈R|x2-x-2>0},則A∩(CRB)=( 。
A、(-1,2)
B、[-1,2]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目: 來(lái)源: 題型:

已知△ABC的面積為
3
,且
AB
AC
=2

(1)求角A的大;
(2)求
2si
n
2
 
A
2
+2sin
A
2
cos
A
2
-1
cos(
π
4
-A)
的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

直線l1
x=1+2t
y=2+t
(t為參數(shù))與直線l2
x=2+scosα
y=sinα
(s為參數(shù))平行,則直線l2的斜率為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足2(Sn+1)=3an(n∈N+).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=
2n
an
,{bn}
的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案