相關(guān)習(xí)題
 0  231322  231330  231336  231340  231346  231348  231352  231358  231360  231366  231372  231376  231378  231382  231388  231390  231396  231400  231402  231406  231408  231412  231414  231416  231417  231418  231420  231421  231422  231424  231426  231430  231432  231436  231438  231442  231448  231450  231456  231460  231462  231466  231472  231478  231480  231486  231490  231492  231498  231502  231508  231516  266669 

科目: 來源: 題型:解答題

10.已知f(x)=|ax+2|,g(x)=|2x+b|.
(1)若a=1,b=-2,求不等式f(x)-g(x)≥-2的解集;
(2)求證:f(x)≥g(x)恒成立,的條件為ab=4且|a|≥2.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-a|
(1)若f(x)<b,的解集為{x|-1<x<2},求實(shí)數(shù)a,b的值;
(2)若a=2時(shí),不等式f(x)+m≥f(x+2)對一切實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知函數(shù)f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值記為an,其中a1=0,a2=1,則an=n-1.

查看答案和解析>>

科目: 來源: 題型:解答題

7.某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
P(X2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.某市決定就“近來交通整治是否滿意”進(jìn)行問卷調(diào)查,現(xiàn)收集男性、女性市民統(tǒng)計(jì)表各50份,統(tǒng)計(jì)結(jié)果如下:
 滿意 不滿意 總計(jì)
男性/人 42 8 50
 女性/人 28 22 50
 總計(jì)/人 70 30100
(Ⅰ)能有多大把握認(rèn)為“市民對進(jìn)來交通整治是否滿意”與性別有關(guān)?
(Ⅱ)已知不滿意的8名男性居民中,有4名老年人、3名中年人、1名青年人,現(xiàn)隨機(jī)地對8名男性市民逐個征集意見,直到有老年人被征集意見為止,求被征集意見的人數(shù)ξ的分布列和數(shù)學(xué)期望.
附:
 P(K2≥k) 0.100 0.050 0.010 0.001
 k 2.706 3.843 6.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知f(x)=x3-6x2+9x+a有三個不同的零點(diǎn),則下述判斷中一定正確的是(  )
A.a為任意實(shí)數(shù)B.a=f′(3)C.a>f′(3)D.a<f′(3)

查看答案和解析>>

科目: 來源: 題型:解答題

4.某公司200名員工中$\frac{90}{100}$的人使用微信,其中每天使用微信時(shí)間在一小時(shí)內(nèi)有關(guān)60人,其余員工每天使用微信時(shí)間在一小時(shí)以上.若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)二個階段,那么使用微信的人中$\frac{75}{100}$是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,那么經(jīng)常使用微信員工中$\frac{2}{3}$是青年人.
(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡關(guān)系,列出2×2列聯(lián)表
青年人中年人合計(jì)
經(jīng)常使用微信
不經(jīng)常使用微信
合計(jì)
(1)由列聯(lián)表中所得數(shù)據(jù)判斷是否有$\frac{99.9}{100}$把握認(rèn)為“經(jīng)常使用微信年齡有關(guān)”.
(2)采用分層抽樣方法從“經(jīng)常使用微信“的人中抽取6人,從這6人中任選2人,求選出2人均是青年人的概率.
P(k2≥k)0.0100.001
k6.63510.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 來源: 題型:填空題

3.在體積為$\frac{{\sqrt{3}}}{2}$的四面體ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,則CD長度的所有值為$\sqrt{7},\sqrt{19}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.圓心在拋物線y2=2x(y≥0)上,經(jīng)過點(diǎn)(2,0)且面積最小的圓為⊙C,直線y=kx+2與⊙C相交于A,B兩點(diǎn),當(dāng)弦長|AB|取得最小值時(shí)k=$\frac{2+\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,點(diǎn)F到直線ax+by=0的距離為$\frac{2\sqrt{5}}{5}$,橢圓E的離心率為$\frac{2\sqrt{2}}{3}$,過點(diǎn)F的直線11交橢圓E于A,B兩點(diǎn),過F作直線l2交橢圓E于C、D兩點(diǎn),且l1⊥l2
(I)求橢圓E的方程;
(Ⅱ)求四邊形ACBD面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案