相關(guān)習(xí)題
 0  231701  231709  231715  231719  231725  231727  231731  231737  231739  231745  231751  231755  231757  231761  231767  231769  231775  231779  231781  231785  231787  231791  231793  231795  231796  231797  231799  231800  231801  231803  231805  231809  231811  231815  231817  231821  231827  231829  231835  231839  231841  231845  231851  231857  231859  231865  231869  231871  231877  231881  231887  231895  266669 

科目: 來(lái)源: 題型:解答題

2.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.曲線C2的極坐標(biāo)方程為ρsinθ=1.
(1)將曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)求曲線C1與曲線C2的交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=xex,其中e是自然對(duì)數(shù)的底數(shù),若存在整數(shù)t使方程f(x)=x+2在[t,t+1]上有解,則滿足條件的所有整數(shù)t的取值集合為{-3,1}.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,拋物線y=x2異于坐標(biāo)原點(diǎn)O的兩個(gè)不同動(dòng)點(diǎn)A、B,滿足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則△ABC的重心G的軌跡的普通方程為$y=3{x}^{2}+\frac{2}{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.定積分${∫}_{-2}^{1}$x2dx的值為3.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.“c=6”是“函數(shù)f(x)=x(x-c)2在x=2處有極大值”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.(x-y)(x+y)8的展開(kāi)式中x2y7的系數(shù)是(  )
A.-20B.20C.-22D.22

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.在極坐標(biāo)系中,與點(diǎn)(3,-$\frac{π}{3}$)關(guān)于極軸所在直線對(duì)稱(chēng)的點(diǎn)的極坐標(biāo)是(  )
A.(3,$\frac{2π}{3}$)B.(3,$\frac{π}{3}$)C.(3,$\frac{4π}{3}$)D.(3,$\frac{5π}{6}$)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=tan(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一個(gè)對(duì)稱(chēng)中心為($\frac{π}{3}$,0),則φ的值是( 。
A.-$\frac{π}{6}$B.$\frac{π}{3}$C.-$\frac{π}{3}$D.-$\frac{π}{6}$或$\frac{π}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離等于$\frac{π}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)求最小正實(shí)數(shù)m,使得f(x)圖象向左平移m個(gè)單位后所對(duì)應(yīng)的函數(shù)是偶函數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.函數(shù)y=x-sinx在[${\frac{π}{2}$,$\frac{3π}{2}}$]上的最大值是( 。
A.$\frac{π}{2}$-1B.$\frac{3π}{2}$+1C.$\frac{π}{2}$-$\frac{{\sqrt{2}}}{2}$D.$\frac{3π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案