相關(guān)習(xí)題
 0  232995  233003  233009  233013  233019  233021  233025  233031  233033  233039  233045  233049  233051  233055  233061  233063  233069  233073  233075  233079  233081  233085  233087  233089  233090  233091  233093  233094  233095  233097  233099  233103  233105  233109  233111  233115  233121  233123  233129  233133  233135  233139  233145  233151  233153  233159  233163  233165  233171  233175  233181  233189  266669 

科目: 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,D是BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面ADC1;
(Ⅱ)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1與平面ABC所成的銳二面角的正切值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.下列函數(shù)中,最小值是4的函數(shù)是( 。
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.$y={log_3}x+\frac{4}{{{{log}_3}x}}$

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-1-lnx (a∈R).
(Ⅰ) 討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ) 若a=1時(shí),對(duì)于?x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.在平面直角坐標(biāo)系xoy中,拋物線C:x2=4y.
(Ⅰ)如果直線l過拋物線的焦點(diǎn),且與拋物線C相交于不同的兩點(diǎn)A,B,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值;
(Ⅱ)已知點(diǎn)Q(1,3),F(xiàn)為拋物線的焦點(diǎn),在拋物線C上求一點(diǎn)P,使得|PF|+|PQ|取得最小值,并求出最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知a∈R,p:關(guān)于x的方程x2+2x+a=0有兩個(gè)不等實(shí)根;q:方程$\frac{{x}^{2}}{a-3}$+$\frac{{y}^{2}}{a+1}$=1表示雙曲線,若“p∨q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=x3-2x2+x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源: 題型:填空題

5.若拋物線x2=ay(a≠0)在x=1處的切線傾斜角為45°,則該拋物線的準(zhǔn)線方程為y=-$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.若直線l與拋物線y2=4x交于A,B兩點(diǎn),且線段AB的中點(diǎn)為M(3,2),則直線l的方程為(  )
A.x-y-1=0B.x+y-5=0C.2x-y-4=0D.2x+y-8=0

查看答案和解析>>

科目: 來源: 題型:選擇題

3.與曲線$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{49}$=1共焦點(diǎn),且與曲線$\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{64}$=1共漸近線的雙曲線方程為(  )
A.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目: 來源: 題型:選擇題

2.曲線$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1與曲線$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{16-k}$=1 (k<16)有相同的( 。
A.頂點(diǎn)B.長(zhǎng)軸長(zhǎng)C.離心率D.焦點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案