相關習題
 0  237164  237172  237178  237182  237188  237190  237194  237200  237202  237208  237214  237218  237220  237224  237230  237232  237238  237242  237244  237248  237250  237254  237256  237258  237259  237260  237262  237263  237264  237266  237268  237272  237274  237278  237280  237284  237290  237292  237298  237302  237304  237308  237314  237320  237322  237328  237332  237334  237340  237344  237350  237358  266669 

科目: 來源: 題型:填空題

15.已知a>0,曲線f(x)=2ax2-$\frac{1}{ax}$在點(1,f(1))處的切線的斜率為k,則當k取最小值時a的值為$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)是奇函數(shù),當x<0時,f(x)=-x2+x,若不等式f(x)-x≤2logax(a>0且a≠1)對?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{4}$]B.[$\frac{1}{4}$,1)C.(0,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞)

查看答案和解析>>

科目: 來源: 題型:填空題

13.如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點)上一個動點,設$\overrightarrow{AP}=x\overrightarrow{AD},\overrightarrow{PB}•\overrightarrow{PC}=y$,對于函數(shù)y=f(x),給出以下三個結(jié)論:①當a=2時,函數(shù)f(x)的值域為[1,4];②對于任意的a>0,均有f(1)=1;③對于任意的a>0,函數(shù)f(x)的最大值均為4.其中所有正確的結(jié)論序號為②③.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知$tan({α-β})=\frac{{\sqrt{2}}}{2},tanβ=-\frac{{\sqrt{2}}}{2}$,則tan(α-2β)=2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-ax+$\frac{1}{2x}$(a∈R).
(1)當a=-$\frac{3}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)若g(x)=f(x)+a(x-1)有兩個零點x1,x2,且x1<x2,求證:x1+x2>1.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知雙曲線x2-$\frac{{y}^{2}}{m}$=1的左右焦點分別為F1、F2,過點F2的直線交雙曲線右支于A,B兩點,若△ABF1是以A為直角頂點的等腰三角形,則△AF1F2的面積為4-2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知定點M(2,0),若過點M的直線l(斜率不為零)與橢圓$\frac{{x}^{2}}{3}$+y2=1交于不同的兩點E,F(xiàn)(E在點M,F(xiàn)之間),記λ=$\frac{{S}_{△OME}}{{S}_{△OMF}}$,求λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.cos(-$\frac{17}{4}$π)+sin(-$\frac{17}{4}$π)的值是0.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.用列舉法表示集合{(x,y)|$\left\{\begin{array}{l}{y={x}^{2}}\\{y=-x}\end{array}\right.$},正確的是(  )
A.(-1,1),(0,0)B.{(-1,1),(0,0)}C.{x=-1或0,y=1或0}D.{-1,0,1}

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知集合M={x∈Z|x(x-3)≤0},N={x|lnx<1},則M∩N=( 。
A.{1,2}B.{2,3}C.{0,1,2}D.{1,2,3}

查看答案和解析>>

同步練習冊答案