相關(guān)習(xí)題
 0  237932  237940  237946  237950  237956  237958  237962  237968  237970  237976  237982  237986  237988  237992  237998  238000  238006  238010  238012  238016  238018  238022  238024  238026  238027  238028  238030  238031  238032  238034  238036  238040  238042  238046  238048  238052  238058  238060  238066  238070  238072  238076  238082  238088  238090  238096  238100  238102  238108  238112  238118  238126  266669 

科目: 來(lái)源: 題型:選擇題

3.已知定義在R上的函數(shù)f(x)=ex+mx2-m(m>0),當(dāng)x1+x2=1時(shí),不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實(shí)數(shù)x1的取值范圍是( 。
A.(-∞,0)B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.(1,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow{OA}=(3,1)$,$\overrightarrow{OB}=(-1,3)$,$\overrightarrow{OC}=m\overrightarrow{OA}-n\overrightarrow{OB}$(m>0,n>0),若m+n∈[1,2],則$|\overrightarrow{OC}|$的取值范圍是( 。
A.$[\sqrt{5},2\sqrt{5}]$B.$[\sqrt{5},2\sqrt{10})$C.$(\sqrt{5},\sqrt{10})$D.$[\sqrt{5},2\sqrt{10}]$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.將一枚硬幣連續(xù)拋擲n次,若使得至少有一次正面向上的概率不小于$\frac{15}{16}$,則n的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.在平面內(nèi)的動(dòng)點(diǎn)(x,y)滿足不等式$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1≥0\\ y≥0\end{array}\right.$,則z=2x+y的最大值是( 。
A.6B.4C.2D.0

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.若點(diǎn)P為拋物線$C:{x^2}=\frac{1}{2}y$上的動(dòng)點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),則|PF|的最小值為( 。
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.設(shè)a,b均為實(shí)數(shù),則“a>|b|”是“a3>b3”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.已知集合A={x|x2-2x-3<0},$B=\{x|\frac{1-x}{x}<0\}$,則A∩B=( 。
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<0或0<x<3}D.{x|-1<x<0或1<x<3}

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知復(fù)數(shù)z=1+2i,則$z•\overline z$=( 。
A.5B.5+4iC.-3D.3-4i

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=2x-a,g(x)=x+2.
(1)當(dāng)a=1時(shí),求不等式f(x)+f(-x)≤g(x)的解集;
(2)求證:$f({\frac{2}}),f({-\frac{2}}),f({\frac{1}{2}})$中至少有一個(gè)不小于$\frac{1}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=xex-a(lnx+x).
(1)若函數(shù)f(x)恒有兩個(gè)零點(diǎn),求a的取值范圍;
(2)若對(duì)任意x>0,恒有不等式f(x)≥1成立.
①求實(shí)數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

同步練習(xí)冊(cè)答案