相關(guān)習(xí)題
 0  237967  237975  237981  237985  237991  237993  237997  238003  238005  238011  238017  238021  238023  238027  238033  238035  238041  238045  238047  238051  238053  238057  238059  238061  238062  238063  238065  238066  238067  238069  238071  238075  238077  238081  238083  238087  238093  238095  238101  238105  238107  238111  238117  238123  238125  238131  238135  238137  238143  238147  238153  238161  266669 

科目: 來源: 題型:選擇題

18.若圓的一條直徑的兩個端點(diǎn)分別是(2,0)和(2,-2),則此圓的方程是(  )
A.x2+y2-4x+2y+4=0B.x2+y2-4x-2y-4=0C.x2+y2-4x+2y-4=0D.x2+y2+4x+2y+4=0

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知數(shù)列{an}的首項a1=1,且滿足${a_1}+{a_2}+{a_2}+…+{a_n}=\frac{{n{a_{n+1}}}}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,且${b_n}=\frac{1}{S_n}$,令Tn=b1+b2+…+bn,求證:Tn<2.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.如圖所示,正方形ABCD和正方形DEFG,原點(diǎn)O為AD的中點(diǎn),拋物線y2=2px(p>0)經(jīng)過C,F(xiàn)兩點(diǎn),則直線BE的斜率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$1-\frac{{\sqrt{2}}}{2}$C.$2+\sqrt{2}$D.$2-\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.函數(shù)y=b+asinx(a<0)的最大值為-1,最小值為-5,則y=tan(3a+b)x的最小正周期為(  )
A.$\frac{2π}{9}$B.$\frac{π}{9}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

14.小明和爸爸媽媽一家三口在春節(jié)期間玩搶紅包游戲,爸爸發(fā)了12個紅包,紅包金額依次為1元、2元、3元、…、12元,每次發(fā)一個,三人同時搶,最后每人搶到了4個紅包,爸爸說:我搶到了1元和3元;媽媽說:我搶到了8元和9元;小明說:我們?nèi)烁鲹尩降慕痤~之和相等,據(jù)此可判斷小明必定搶到的兩個紅包金額分別是6元和11元.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知α,β是兩個不同的平面,m,n是兩條不同的直線,則下列五個命題:
①如果m⊥α,n∥β,α∥β,那么m⊥n;
②如果m∥α,n∥β,m⊥n,那么α∥β;
③如果m⊥α,n⊥β,m⊥n,那么α⊥β;
④如果m⊥α,n∥β,m⊥n,那么α∥β;
⑤如果m∥α,m∥β,α∩β=n,那么m∥n.
其中正確的命題有①③⑤.(填寫所有正確命題的編號)

查看答案和解析>>

科目: 來源: 題型:填空題

12.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$cosB=\frac{4}{5}$,$cosC=\frac{5}{13}$,c=4,則a=$\frac{21}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)為定義域?yàn)镽的奇函數(shù),且f(x)=f(2-x),當(dāng)x∈[0,1]時,f(x)=sinx,則函數(shù)g(x)=|cos(πx)|-f(x)在區(qū)間$[-\frac{5}{2},\frac{9}{2}]$上的所有零點(diǎn)的和為(  )
A.6B.7C.13D.14

查看答案和解析>>

科目: 來源: 題型:填空題

10.設(shè)各項均為正數(shù)的等差數(shù)列{an}的前n項和為Sn,且滿足a1a2=35,a1a3=45,則S10=140.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知正項數(shù)列{an}中,a1=1,a2=2,前n項和Sn,且滿足$\frac{{S}_{n+1}}{{S}_{n-1}}$+$\frac{{S}_{n-1}}{{S}_{n+1}}$=$\frac{4{S}_{n}^{2}}{{S}_{n+1}{{S}_{n-1}}_{\;}}$-2(n≥2,n∈N*).
(Ⅰ)求數(shù)列{an)的通項公式;
(Ⅱ)記cn=$\frac{1}{{S}_{n}•{S}_{n+1}}$,數(shù)列{cn}的前n項和為Tn,求證:$\frac{1}{3}$≤Tn$<\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案