科目: 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題均為真命題,則命題為真命題
B. “若,則”的否命題是“若”
C. 在,“”是“”的充要條件
D. 命題“”的否定為“”
查看答案和解析>>
科目: 來源: 題型:
【題目】某IT從業(yè)者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點圖:
(1)由散點圖知,可用回歸模型擬合與的關系,試根據附注提供的有關數據建立關于的回歸方程
(2)若把月收入不低于2萬元稱為“高收入者”.
試利用(1)的結果,估計他36歲時能否稱為“高收入者”?能否有95%的把握認為年齡與收入有關系?
附注:①.參考數據:,,,,,,,其中,取,
②.參考公式:回歸方程中斜率和截距的最小二乘估計分別為:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代有著輝煌的數學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數學的重要文獻,這5部專著中有3部產生于漢、魏、晉、南北朝時期,某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出定義:若(其中為整數),則叫做離實數最近的整數,記作,即.設函數,二次函數,若函數與的圖象有且只有一個公共點,則的取值不可能是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數f(x)在R上單調遞增,求實數a的取值范圍;
(3)是否存在實數a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了美化校園環(huán)境,學校打算在蘭蕙廣場上建造一個矩形花園,中間有三個完全一樣 的矩形花壇,每個花壇的面積均為294平方米,花壇四周的過道寬度均為2米,如圖所示,設矩形花壇的長為米,寬為米,整個矩形花園的面積為平方米.
(1)試用、表示;
(2)為了節(jié)約用地,當矩形花壇的長為多少米時,新建矩形花園占地最少,占地最少為多少平方米?
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)為確定下一年投入某種產品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量y(單位:萬件)的影響,統計了近10年投入的年研發(fā)費用x,與年銷售量的數據,得到散點圖如圖所示:
(1)利用散點圖判斷,和(其中 為大于0的常數)哪一個更適合作為年研發(fā)費用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由).
(2)對數據作出如下處理:令,,得到相關統計量的值如下表:
15 | 15 | 28.25 | 56.5 |
根據(1)的判斷結果及表中數據,求關于的回歸方程;
(3)已知企業(yè)年利潤z(單位:千萬元)與,的關系為(其中…),根據(2)的結果,要使得該企業(yè)下年的年利潤最大,預計下一年應投入多少研發(fā)費用?
附:對于一組數據,…,,其回歸直線的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com