科目: 來源: 題型:
【題目】(本小題滿分12分,(Ⅰ)小問6分,(Ⅱ)小問6分)一家公司計劃生產(chǎn)某種小型產(chǎn)品的月固定成本為萬元,每生產(chǎn)萬件需要再投入萬元.設該公司一個月內(nèi)生產(chǎn)該小型產(chǎn)品萬件并全部銷售完,每萬件的銷售收入為萬元,且每萬件國家給予補助萬元. (為自然對數(shù)的底數(shù),是一個常數(shù).)
(Ⅰ)寫出月利潤(萬元)關于月產(chǎn)量(萬件)的函數(shù)解析式;
(Ⅱ)當月生產(chǎn)量在萬件時,求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值(萬元)及此時的月生產(chǎn)量值(萬件). (注:月利潤=月銷售收入+月國家補助-月總成本).
查看答案和解析>>
科目: 來源: 題型:
【題目】為響應綠色出行,前段時間大連市在推出“共享單車”后,又推出“新能源分時租賃汽車”,其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據(jù)行駛里程按1元/公里計費;②行駛時間不超過40分鐘時,按0.12元/分鐘計費:超出部分按0.20元/分鐘計費,己知張先生家離上班地點15公里,每天租用該款汽車上、下班各一次.由于堵車、紅路燈等因素,每次路上開車花費的時間(分鐘)是一個隨機變量.現(xiàn)統(tǒng)計了100次路上開車花費時間,在各時間段內(nèi)的頻數(shù)分布情況如下表所示:
時間(分鐘) |
|
|
|
|
頻數(shù) | 4 | 36 | 40 | 20 |
將各時間段發(fā)生的頻率視為概率,每次路上開車花費的時間視為用車的時間,范圍為分鐘.
(1)寫出張先生一次租車費用(元)與用車時間(分鐘)的函數(shù)關系式:
(2)若公司每月給900元的車補,請估計張先生每月(按24天計算)的車補是否足夠上下班租用新能源分時租賃汽車?并說明理由.(同一時段,用該區(qū)間的中點值作代表)
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù),,數(shù)列滿足條件:對于,,且,并有關系式:,又設數(shù)列滿足(且,).
(1)求證數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(2)試問數(shù)列是否為等差數(shù)列,如果是,請寫出公差,如果不是,說明理由;
(3)若,記,,設數(shù)列的前項和為,數(shù)列的前項和為,若對任意的,不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)滿足以下4個條件.
①函數(shù)的定義域是,且其圖象是一條連續(xù)不斷的曲線;
②函數(shù)在不是單調(diào)函數(shù);
③函數(shù)是偶函數(shù);
④函數(shù)恰有2個零點.
(1)寫出函數(shù)的一個解析式;
(2)畫出所寫函數(shù)的解析式的簡圖;
(3)證明滿足結論③及④.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)完成表一中對應的值,并在坐標系中用描點法作出函數(shù)的圖象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根據(jù)你所作圖象判斷函數(shù)的單調(diào)性,并用定義證明;
(3)說明方程的根在區(qū)間存在的理由,并從表二中求使方程的根的近似值達到精確度為0.01時運算次數(shù)的最小值并求此時方程的根的近似值,且說明理由.
(表二)二分法的結果
運算次數(shù)的值 | 左端點 | 右端點 | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |
查看答案和解析>>
科目: 來源: 題型:
【題目】把兩個全等的正三棱錐的底面粘在一起,在所得的六面體中,所有二面角相等,而頂點可分成兩類:在第一類中,每一個頂點發(fā)出三條棱;而在第二類頂點中,每一個頂點發(fā)出四條棱。試求連結兩個第一類頂點的線段長與連結兩個第二類頂點的線段長之比。
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線的參數(shù)方程為(, 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.
(Ⅰ)當時,求曲線上的點到直線的距離的最大值;
(Ⅱ)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
為描述該超級快艇每小時航行費用Q與速度v的關系,現(xiàn)有以下三種函數(shù)模型供選擇:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)試從中確定最符合實際的函數(shù)模型,并求出相應的函數(shù)解析式;
(2)該超級快艇應以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com