相關(guān)習(xí)題
 0  262927  262935  262941  262945  262951  262953  262957  262963  262965  262971  262977  262981  262983  262987  262993  262995  263001  263005  263007  263011  263013  263017  263019  263021  263022  263023  263025  263026  263027  263029  263031  263035  263037  263041  263043  263047  263053  263055  263061  263065  263067  263071  263077  263083  263085  263091  263095  263097  263103  263107  263113  263121  266669 

科目: 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上單調(diào)遞減,求實數(shù)的取值范圍;

2)是否存在實數(shù),使得上的值域恰好是?若存在,求出實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)為橢圓的內(nèi)接三角形,其中,為橢圓軸正半軸的交點,直線斜率的乘積為,的重心.的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

參數(shù)數(shù)據(jù)及公式:,,,,,.

1)若用線性回歸模型擬合yx的關(guān)系,求y關(guān)于x的線性回歸方程;

2)用對數(shù)回歸模型擬合yx的關(guān)系,可得回歸方程:,經(jīng)計算得出線性回歸模型和對數(shù)模型的分別約為0.750.97,請用說明選擇哪個回歸模型更合適,并用此模型預(yù)測A超市廣告費(fèi)支出為8萬元時的銷售額.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系中,過點的直線的參數(shù)方程為:為參數(shù)), 以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線與曲線分別交于兩點.

1)寫出曲線的普通方程;

2)若成等比數(shù)列,求.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)的最小值為1,

(1)求的解析式;

(2)若在區(qū)間上不單調(diào),求實數(shù)m的取值范圍;

(3)求函數(shù)在區(qū)間上的最小值

查看答案和解析>>

科目: 來源: 題型:

【題目】“石頭、剪刀、布”是一種廣泛流傳于我國民間的古老游戲,其規(guī)則是:用三種不同的手勢分別表示石頭、剪刀、布;兩個玩家同時出示各自手勢次記為次游戲,“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”;雙方出示的手勢相同時,不分勝負(fù).現(xiàn)假設(shè)玩家甲、乙雙方在游戲時出示三種手勢是等可能的.

1)求在次游戲中玩家甲勝玩家乙的概率;

2)若玩家甲、乙雙方共進(jìn)行了次游戲,其中玩家甲勝玩家乙的次數(shù)記作隨機(jī)變量,求的分布列及.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),

(1)證明:,直線都不是曲線的切線;

(2)若,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】(1).公路上、兩鎮(zhèn)相距5公里,、往外各有兩條叉路成形狀,計劃在每條叉路上各建一加油站,要求每個站到、鎮(zhèn)及其他站(沿公路進(jìn)過鎮(zhèn))距離互不相同,且距離均為整數(shù)公里,最長不超過15公里,此計劃能否實現(xiàn)?

(2).、向外各有3條叉路,欲建六個加油站,依然要求站與鎮(zhèn),站與站之間距離互不相同且為整數(shù)公路,最長者不超過28公里,能否實現(xiàn)?為什么?

查看答案和解析>>

科目: 來源: 題型:

【題目】在圓上有21個點.證明:以這些點為端點組成的所有弧中,不超過120°的弧不少于100.

查看答案和解析>>

科目: 來源: 題型:

【題目】給出下列命題:某射手射擊一次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊三次,且他每次射擊是否擊中目標(biāo)之間沒有影響,有下列結(jié)論:①他三次都擊中目標(biāo)的概率是;②他第三次擊中目標(biāo)的概率是; ③他恰好2次擊中目標(biāo)的概率是;④他至少次擊中目標(biāo)的概率是;⑤他至多2次擊中目標(biāo)的概率是.其中正確命題的序號是 ________(正確命題的序號全填上).

查看答案和解析>>

同步練習(xí)冊答案