精英家教網 > 高中物理 > 題目詳情
7.如圖所示,水平放置的帶小孔的金屬薄板間有勻強電場,薄板的上極板電勢高于下極板,板間距d=1.25m.M恰好在薄板小孔P、N的正上方,距上極板的距離h=1.25m.若從M處由靜止釋放一個質量m=1×10-3kg電荷量為qa=-4×10-3C的帶電小球a,小球a恰好能到達下極板的N孔處而未穿出極板,現(xiàn)若將m=1×10-3kg電荷量為qb=-5×10-3C的帶電小球b從M點由靜止釋放,重力加速度g=10m/s2,下列說法正確的是(  )
A.薄板間的勻強電場的電場強度為3×105N/C
B.薄板間的勻強電場的電場強度為5×105N/C
C.帶電小球a從M處下落至下極板的時間為1.0s
D.帶電小球b從M處下落的過程中機械能的變化量為-$\frac{1}{48}$J

分析 對小球由靜止開始到下端小球到達下極板的過程中運用動能定理,求出兩極板間勻強電場的電場強度.
小球先做自由落體運動,由運動學位移公式求出自由下落到小孔的時間,由位移速度公式求出到達A板小孔的速度.小球在勻強電場中做勻加速運動,根據(jù)牛頓第二定律和運動學位移公式結合時間,即可得到總時間.
結合機械能的變化量等于電場力做功,由功能關系求解.

解答 解:A、小球由靜止開始下落到下端的小球到達下極板的過程中,由動能定理得:
mg(h+d)-Eqad=0
解得:E=5×105N/C.故A錯誤,B正確;
C、對于小球自由下落的過程,有 h=$\frac{1}{2}g{t}_{1}^{2}$
解得,t1=$\sqrt{\frac{2h}{g}}$=$\sqrt{\frac{2×1.25}{10}}$s=0.5s;
小球到達小孔時的速度為  v1=$\sqrt{2gh}$=$\sqrt{2×10×1.25}$m/s=5m/s;
小球在勻強電場中的加速度 α=$\frac{{q}_{a}E-mg}{m}$
代入數(shù)據(jù)得:a=10m/s2;
由0=v-at2
代入數(shù)據(jù)解得:t2=0.5 s.
故帶電小球a從M處下落至下極板的時間為:t=t1+t2=0.5s+0.5s=1.0s.故C正確;
D、設帶電小球b在電場內下降的高度為x,由動能定理得:mg(h+x)-Eqbx=0
代入數(shù)據(jù)得:x=$\frac{5}{6}$m
此過程中小球的機械能的改變量等于克服電場力做的功,即△E=-qb•E•x
代入數(shù)據(jù)得:$△{E}_{機}=-\frac{1}{48}$J
故選:BCD

點評 本題考查了牛頓第二定律和動能定理的綜合運用,要分析出兩球由靜止開始下落至下端小球恰好進入小孔時兩球達到最大速度,掌握整體法和隔離法的靈活運用.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:多選題

15.光滑斜面的長度為L,一物體自斜面頂端由靜止開始勻加速滑至底端,經歷的時間為t,則下列說法正確的是( 。
A.物體運動全過程中的平均速度是$\frac{L}{t}$
B.物體在$\frac{t}{2}$時的瞬時速度是$\frac{2L}{t}$
C.物體運動到斜面中點時瞬時速度是$\frac{\sqrt{2}L}{t}$
D.物體從頂端運動到底端時的速度是2$\frac{L}{t}$

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

16.如圖所示的電解槽中,如果在4s內各有4C的正、負電荷通過面積為0.08m2的橫截面AB,那么( 。 
A.正離子向左移動,負離子向右移動
B.由于正負離子移動方向相反,所以電解槽中無電流
C.4s內通過橫截面AB的電荷量為4C
D.電解槽中的電流為2A

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

13.如圖所示,在水平面上有一根質量為0.2kg、長度為0.5m,且通有恒定電流2A的直導線,直導線周圍空間存在范圍足夠大的勻強磁場,通電直導線在磁場力作用下沿水平面始終做加速度為1m/s2的勻加速直線運動.導線與水平面間的動摩擦因數(shù)為$\frac{\sqrt{3}}{3}$.求:當磁場方向與水平面成多大角度時,磁感應強度最。壳蟪鲎钚〉拇鸥袘獜姸龋

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

2.如圖甲所示,小車上插一豎直桿,并在豎直桿上端固定一橫桿,總質量為M,現(xiàn)用細線懸掛一質量為m的小球.若分別施加水平恒力F1、F2作用在小車和小球上,使之細線與豎直方向的夾角為θ,如圖乙、丙所示,則下列判斷正確的是(  )
A.細線的拉力大小不同B.地面對小車的支持力不同
C.水平恒力不同D.兩個小車的加速度相同

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

12.月球探測器在月面實現(xiàn)軟著陸是非常困難的,探測器接觸地面瞬間速度為豎直向下的v1,大于要求的軟著陸速度v0,為此,科學家們設計了一種叫電磁阻尼緩沖裝置,其原理如圖所示.主要部件為緩沖滑塊K和絕緣光滑的緩沖軌道MN、PQ.探測器主體中還有超導線圈(圖中未畫出),能在兩軌道間產生垂直于導軌平面的勻強磁場.導軌內的緩沖滑塊由高強絕緣材料制成,滑塊K上繞有閉合單匝矩形線圈abcd,線圈的總電阻為R,ab邊長為L.當探測器接觸地面時,滑塊K立即停止運動,此后線圈與軌道間的磁場發(fā)生作用,使探測器主體做減速運動,從而實現(xiàn)緩沖.已知裝置中除緩沖滑塊(含線圈)外的質量為m,月球表面的重力加速度為$\frac{g}{6}$,不考慮運動磁場產生的電場.
(1)當緩沖滑塊剛停止運動時,判斷線圈中感應電流的方向和線圈ab邊受到的安培力的方向;
(2)為使探測器主體減速而安全著陸,磁感應強度B應滿足什么條件?
(3)當磁感應強度為B0時,探測器主體可以實現(xiàn)軟著陸,若從v1減速到v0的過程中,通過線圈截面的電量為q.求該過程中線圈中產生的焦耳熱Q.

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

19.實驗表明,熾熱的金屬絲可以發(fā)射電子.在圖中,從熾熱金屬絲射出的電子流,經電場加速后進入偏轉電場.已知加速電極間的電壓U1=2 500V,偏轉電極間的電壓U2=2.0V,偏轉電極極板長l=6.0cm,板間距d=0.2cm.電子的質量是m=0.91×10-30kg,帶電量大小為e=1.6×10-19C,電子重力不計,未打到極板上.求:
(1)電子離開加速電場時的速度v的大小;
(2)電子離開偏轉電場時的豎直方向速度v⊥的大。
(3)電子離開偏轉電場時豎直方向移動的距離y.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

16.如圖所示,M、N是豎直放置的兩平行金屬板,分別帶等量異種電荷,兩極間產生一個水平向右的勻強電場,場強為E,一質量為m、電量為+q的微粒,以初速度v0豎直向上從兩極正中間的A點射入勻強電場中,微粒垂直打到N極上的C點,已知AB=BC.不計空氣阻力,則可知( 。
A.微粒在電場中作勻變速曲線運動
B.微粒打到C點時的速率與射入電場時的速率相等
C.MN板間的電勢差為$\frac{{mv^2}_{0}}{q}$
D.MN板間的電勢差為$\frac{{Ev^2}_{0}}{2g}$

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

17.如圖所示,兩個質量相等的帶電粒子a、b在同一位置A以大小相同的速度射入同一勻強磁場,兩粒子的入射方向與磁場邊界的夾角分別為30°和60°,經磁場偏轉后兩粒子都經過B點,AB連線與磁場邊界垂直,則( 。
A.a粒子帶正電,b粒子帶負電B.兩粒子的軌道半徑之比Ra:Rb=$\sqrt{3}$:1
C.兩粒子所帶電荷量之比qa:qb=$\sqrt{3}$:1D.兩粒子的運動時間之比ta:tb=2:$\sqrt{3}$

查看答案和解析>>

同步練習冊答案