5.天體表面上物體擺脫該天體萬有引力的束縛飛向宇宙空間所需的最小值速度稱為逃逸速度,已知物體在地球上的逃逸速度(第二宇宙速度)v2=$\sqrt{\frac{2G{M}_{E}}{{R}_{E}}}$,其中G、ME、RE、分別是引力常量、地球的質(zhì)量和半徑,已知G=6.67×10-11Nm2/kg2,光速c=2.9979×108m/s.
(1)逃逸速度大于真空中光速的天體叫做黑洞,設(shè)某黑洞的質(zhì)量等于太陽的質(zhì)量M=1.98×1030kg,它的最大半徑(這個半徑叫做Schwarzchild半徑)可能是多少?
(2)在目前天文觀測范圍內(nèi),物質(zhì)的平均密度為10-27kg/m3,如果認(rèn)為宇宙是這樣一個均勻的大球體,其密度使得它的逃逸速度大于真空中的速度c,因此任何物體都不能脫離宇宙,問宇宙的半徑至少是多大?(用光年表示,1光年=9.46×1015m)

分析 (1)任何物體(包括光子)都不能脫離黑洞的束縛,那么黑洞表面脫離的速度應(yīng)大于光速,根據(jù)$c≤\sqrt{\frac{2GM}{R}}$即可求解;
(2)根據(jù)質(zhì)量與密度的關(guān)系先求出質(zhì)量,根據(jù)(1)的分析即可求解.

解答 解:(1)由題目所提供的信息可知,任何天體均存在其所對應(yīng)的逃逸速${v}_{2}^{\;}=\sqrt{\frac{2GM}{R}}$,其中M、R為天體的質(zhì)量和半徑.對于黑洞模型來說,其逃逸速度大于真空中的光速,即${v}_{2}^{\;}>c$,所以$R<\frac{2GM}{{c}_{\;}^{2}}$=$\frac{2×6.67×1{0}_{\;}^{-11}×1.98×1{0}_{\;}^{30}}{(2.9979×1{0}_{\;}^{8})_{\;}^{2}}=2.94×1{0}_{\;}^{3}$m
故最大半徑為$2.94×1{0}_{\;}^{3}m$
(2)$M=ρ•\frac{4}{3}π{R}_{\;}^{3}$,其中R為宇宙的半徑,ρ為宇宙的密度,
則宇宙所對應(yīng)的逃逸速度為${v}_{2}^{\;}=\sqrt{\frac{2GM}{R}}$,由于宇宙密度使得其逃逸速度大于光速c,則$R>\sqrt{\frac{3{c}_{\;}^{2}}{8πρG}}$=$4.01×1{0}_{\;}^{26}m$
合$4.24×1{0}_{\;}^{10}$光年,即宇宙的半徑至少為$4.24×1{0}_{\;}^{10}$光年.
答:(1)它的可能最大半徑為$2.94×1{0}_{\;}^{3}m$
(2)宇宙的半徑至少為$4.24×1{0}_{\;}^{10}$光年.

點評 本題考查了萬有引力定律定律及圓周運動向心力公式的直接應(yīng)用,要注意任何物體(包括光子)都不能脫離黑洞的束縛,那么黑洞表面脫離的速度應(yīng)大于光速.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:選擇題

15.如圖為單擺在兩次受迫震動中的共振曲線,則下列說法正確的是( 。
A.兩個單擺的固有周期之比為T:T=5:2
B.若兩個受迫振動是在地球上同一地點進(jìn)行,則兩個擺長之比為l:l=4:25
C.圖線Ⅱ若是在地球表面上完成的,則該擺擺長約為2m
D.若兩個受迫振動分別在月球上和地球上進(jìn)行,且擺長相等,則圖線Ⅱ是月球上的單擺的共振曲線

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

16.1929年,英國物理學(xué)家查德威克,用質(zhì)子轟擊鈹原子核,產(chǎn)生一種未知的粒子,他用這種粒子與靜止的氫原子核正碰,測出碰撞后氫原子核的速度是3.3×107m/s,該未知粒子與靜止的氮原子核正碰,測出碰撞后氮原子核的速度是4.7×106m/s.已知氫原子核的質(zhì)量為m,氮原子核的質(zhì)量為14m,上述碰撞都是彈性碰撞,求未知粒子的質(zhì)量.(這實際上是查德威克發(fā)現(xiàn)中子和測量中子質(zhì)量的實驗)

查看答案和解析>>

科目:高中物理 來源: 題型:實驗題

13.在用單擺測重力加速度的實驗中
(1)在“用單擺測定重力加速度”的實驗中,用毫米刻度尺測得懸線長為98.00cm,用10分度的游標(biāo)卡尺測擺球的直徑時示數(shù)如圖1所示,則該單擺的擺長為99.98cm.

(2)為了比較準(zhǔn)確地測量出當(dāng)?shù)氐闹亓铀俣戎,?yīng)選用下列所給器材中的哪些?
(將所選用的器材的字母填在題后的橫線上.)
(A)長1m左右的細(xì)繩;   (B)長30m左右的細(xì)繩;
(C)直徑2cm的鐵球;    (D)直徑2cm的木球;
(E)秒表;(F)時鐘;(G)最小刻度是厘米的直尺;(H)最小刻度是毫米的直尺.
所選擇的器材是ACEH.(填序號)
(3)實驗時擺線偏離豎直線的要求是擺線與豎直方向的夾角不超過(或小于)5°.為了減小測量周期的誤差,應(yīng)在平衡 位置開始計時和結(jié)束計時.
(4)某同學(xué)測出不同擺長時對應(yīng)的周期T,作出T2~L圖線,如圖2所示,再利用圖線上任兩點A、B的坐標(biāo)(x1,y1)、(x2,y2),可求得g=$\frac{4{π}^{2}({x}_{2}-{x}_{1})}{{y}_{2}-{y}_{1}}$.若該同學(xué)測擺長時漏加了小球半徑,而其它測量、計算無誤,也不考慮實驗誤差,則用上述方法算得的g值和真實值相比是不變的(選填“偏大”、“偏小”或“不變”).

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

20.如圖所示,一物體在水平地面上,物體受到水平向右的推力F1=8N,水平向左的推力F2=2N的作用,物體處于靜止?fàn)顟B(tài).則下面判斷正確的是( 。
A.若撤去力F1,則物體受到的合外力大小6N,方向向左
B.若撤去力F1,則物體受到的摩擦力一定是2N
C.若撤去力F2,則物體受到的合外力可能為零
D.若撤去力F2,則物體受到的摩擦力一定是8N

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

10.引力波的發(fā)現(xiàn)證實了愛因斯坦100年前所做的預(yù)測.1974年發(fā)現(xiàn)了脈沖雙星間的距離在減小就已間接地證明了引力波的存在.如果將雙星系統(tǒng)簡化為理想的圓周運動模型,如圖所示,兩星球僅在相互間的萬有引力作用下,繞O點做勻速圓周運動;假設(shè)雙星間的距離L已知且保持不變,兩星周期為T,質(zhì)量分別為m1、m2,對應(yīng)的軌道半徑為r1、r2(r1≠r2),加速度大小為a1、a2,萬有引力常量為G,則下列關(guān)系式正確的是( 。
A.m1a1=m2a2B.a1r12=a2r22
C.m1r1=a2r2D.T2=$\frac{4{π}^{2}{L}^{3}}{G({m}_{1}+{m}_{2})}$

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

17.如圖所示是某一靜電場的等差等勢面,圖中ad是一水平線,僅受電場力的帶電粒子由a點運動到e點的軌跡如圖中實線所示,則(  )
A.ab=bc
B.帶電粒子在a點的電場力一定大于在e點的電場力
C.帶電粒子在a點的電勢能一定大于在e點的電勢能
D.帶電粒子在a點的速度一定大于在e點的速度

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

12.一定量的理想氣體從狀態(tài)a開始,經(jīng)歷三個過程ab、bc、ca回到原狀態(tài),其p-T圖象如圖所示,過程ab中氣體一定吸熱(填“吸熱”或者“放熱”),a、b和c三個狀態(tài)中,分子的平均動能最小的是狀態(tài)a(填“a”、“b”或者“c”)

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

13.如圖,自行車的大齒輪、小齒輪、后輪三個輪子的半徑都不一樣,它們的邊緣有三個點A、B、C,RC>RA>RB,在人正常騎車前進(jìn)時,下列說法正確的是( 。
A.A、B兩點線速度相同B.A、B、C三點的角速度相同
C.A點的角速度小于B點的角速度D.A、B、C三點的向心加速度大小相同

查看答案和解析>>

同步練習(xí)冊答案