已知拋物線y2=2px 的焦點在直線 y=x-2上.現(xiàn)將拋物線沿向量a進行平移.且使得拋物線的焦點沿 直線y=x-2 移到點處.則平移后所得拋物線被y軸截得的弦長= . 查看更多

 

題目列表(包括答案和解析)

已知拋物線y2=2px(p>0)的焦點為F,準線為l

(Ⅰ)求拋物線上任意一點Q到定點N(2p,0)的最近距離;

(Ⅱ)過點F作一直線與拋物線相交于A、B兩點,并在準線l上任取一點M,當M不在x軸上時,證明:是一個定值,并求出這個值.

查看答案和解析>>

已知拋物線y2=2pxp>0).過動點Ma,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.

(Ⅰ)求a的取值范圍;

(Ⅱ)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.

查看答案和解析>>

在直角坐標系xoy中,已知拋物線y2=2px(p>0),過點(2p,0)作直線交拋物線于A(x1,y1)、B(x2,y2)兩點,給出下列結論:(1)OA⊥OB(2)△AOB的最小面積是4p2(3)x1x2=-4p2其中正確的結論是________.

查看答案和解析>>

已知拋物線y2=2px(p>0),過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,①若|AB|≤2p,求a的取值范圍;②若線段AB的垂直平分線交AB于點Q,交x軸于點N,求直角三角形MNQ的面積.

查看答案和解析>>

如圖所示,已知拋物線y2=2px(p>0),過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,且|AB|≤2p.

(1)求a的取值范圍;

(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.

查看答案和解析>>


同步練習冊答案