設(shè)f(n)=(1+,用數(shù)學(xué)歸納法證明f(n)≥3.在“假設(shè)n=k時(shí)成立 后.f(k+1)與f(k)的關(guān)系是f(k+1)=f(k)· . 查看更多

 

題目列表(包括答案和解析)

在用數(shù)學(xué)歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過(guò)程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( 。
A.
1
2k+1
+
1
2k+2
B.
1
2k+1
+
1
2k+2
-
1
k
C.
1
2k+2
-
1
k
D.
1
2k+2
-
1
2k

查看答案和解析>>

在用數(shù)學(xué)歸納法證明f(n)=++…+<1(n∈N*,n≥3)的過(guò)程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( )
A.+
B.+-
C.-
D.-

查看答案和解析>>

在用數(shù)學(xué)歸納法證明f(n)=++…+<1(n∈N*,n≥3)的過(guò)程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( )
A.+
B.+-
C.-
D.-

查看答案和解析>>

在用數(shù)學(xué)歸納法證明f(n)=數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式<1(n∈N*,n≥3)的過(guò)程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=


  1. A.
    數(shù)學(xué)公式+數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式+數(shù)學(xué)公式-數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式-數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式-數(shù)學(xué)公式

查看答案和解析>>

(2012•成都一模)在用數(shù)學(xué)歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過(guò)程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案