(1)求及的坐標(biāo), 查看更多

 

題目列表(包括答案和解析)

坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos()=a,且點(diǎn)A在直線l上.

(1)求a的值及直線l的直角坐標(biāo)方程;

(2)圓c的參數(shù)方程為,(a為參數(shù)),試判斷直線l與圓的位置關(guān)系.

查看答案和解析>>

直角坐標(biāo)平面中,過(guò)點(diǎn)A1(1,0)作函數(shù)f(x)=x2(x>0)的切線l1,其切點(diǎn)為B1(x1,y1);過(guò)點(diǎn)A2(x1,0)作函數(shù)g(x)=ex(x>0)的切線l2,其切點(diǎn)為B2(x2,y2);過(guò)點(diǎn)A3(x2,0)作函數(shù)f(x)=x2(x>0)的切線l3,其切點(diǎn)為B3(x3,y3);如此下去,即過(guò)點(diǎn)A2k-2(x2k-2,0)作函數(shù)f(x)=x2(x>0)的切線l2k-1,其切點(diǎn)為B2k-1(x2k-1,y2k-1);過(guò)點(diǎn)A2k-1(x2k-1,0)作函數(shù)g(x)=ex(x>0)的切線l2k,其切點(diǎn)為B2k(x2k,y2k);….
(1)求x2k-2與x2k-1及x2k-1與x2k的關(guān)系;
(2)求數(shù)列{xn}通項(xiàng)公式xn
(3)是否存在實(shí)數(shù)t,使得對(duì)于任意的自然數(shù)n,不等式
1
x2+1
+
2
x4+1
+
3
x6+1
+…+
n
x2n+1
+1
≤t-
6
t
恒成立?若存在,求出這樣的實(shí)數(shù)t的取值范圍;若不存在,則說(shuō)明理由.

查看答案和解析>>

直角坐標(biāo)系中,直線的參數(shù)方程為,(是參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;
(Ⅱ)若分別是直線與曲線上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091700050431795533/SYS201309170006191852917538_ST.files/image003.png">正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1) 求曲線的直角坐標(biāo)方程以及曲線的普通方程;

(2) 設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),過(guò)點(diǎn)作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

 

查看答案和解析>>

在極坐標(biāo)系內(nèi),已知曲線的方程為,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091600591069701027/SYS201309160100095156642764_ST.files/image003.png">正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1) 求曲線的直角坐標(biāo)方程以及曲線的普通方程;

(2) 設(shè)點(diǎn)為曲線上的動(dòng)點(diǎn),過(guò)點(diǎn)作曲線的兩條切線,求這兩條切線所成角余弦值的取值范圍.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案