由圖象上任意兩點A.B.在A.B之間一定存在一點,使得.又.故有.證畢. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)h(x)=
x2-4x+m
x-2
(x∈R
,且x>2),函數(shù)y=t(x)的圖象經(jīng)過點(4,3),且y=t(x)與y=h(x)的圖象關(guān)于直線y=x對稱,將函數(shù)y=h(x)的圖象向左平移2個單位后得到函數(shù)y=f(x)的圖象.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)=f(x)+
a
x
,g(x)
在區(qū)間(0,3]上的值不小于8,求實數(shù)a的取值范圍.
(III)若函數(shù)f(x)滿足:對任意的x1,x2∈(a,b)(其中x1≠x2),有
f(x1)+f(x2)
2
>f(
x1+x2
2
)
,稱函數(shù)f(x)在(a,b)的圖象是“下凸的”.判斷此題中的函數(shù)f(x)圖象在(0,+∞)是否是“下凸的”?如果是,給出證明;如果不是,說明理由.

查看答案和解析>>

已知函數(shù):f(x)=alnx-ax-3(a∈R).
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45o,是否存在實數(shù)m使得對于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
m
2
]在區(qū)間(t,3)上總不是單調(diào)函數(shù)?若存在,求m的取值范圍;否則,說明理由;
(Ⅲ)求證:
ln2
2
×
ln3
3
×
ln4
4
×
ln5
5
×…×
lnn
n
1
n
(n≥2,n∈N*).

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)

定義:(1)設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)y=(x)的導(dǎo)數(shù),若方程(x)=0有實數(shù)解x0,則稱點為函數(shù)y=f(x)的“拐點”.

(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點對稱.

己知f(x)=x3-3x2+2x+2

求:(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標(biāo)

(Ⅱ)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱;對于任意的三次函數(shù),由此你能得到怎樣的結(jié)論(不必證明)

(Ⅲ)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)不要過程

查看答案和解析>>

已知函數(shù):f(x)=alnx﹣ax﹣3(a∈R).
(I)討論函數(shù)f(x)的單調(diào)性;
(II)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45o,是否存在實數(shù)m使得對于任意的t∈[1,2],函數(shù)g(x)=x3+x2[]在區(qū)間(t,3)上總不是單調(diào)函數(shù)?若存在,求m的取值范圍;否則,說明理由;
(Ⅲ)求證:(n≥2,n∈N*).

查看答案和解析>>

已知函數(shù)f(x)=lnx-ax2+bx(a>0),且f′(1)=0
(1)試用含有a的式子表示b,并求f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)的最大值為g(a),試證明不等式:g(a)>ln(1+)-1
(3)首先閱讀材料:對于函數(shù)圖象上的任意兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)圖象上存在點M(x,y)(x∈(x1,x2)),使得f(x)在點M處的切線l∥AB,則稱AB存在“相依切線”特別地,當(dāng)x=時,則稱AB存在“中值相依切線”.請問在函數(shù)f(x)的圖象上是否存在兩點A(x1,y1),B(x2,y2),使得AB存在“中值相依切線”?若存在,求出一組A、B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案