題目列表(包括答案和解析)
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足.”
(1)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(2)集合M中的元素具有下面的性質(zhì):若的定義域?yàn)?i>D,則對(duì)于任意,都存在,使得等式成立”,試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;
(3)設(shè)是方程的實(shí)數(shù)根,求證:對(duì)于定義域中任意的,當(dāng),且時(shí),.
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足.”
(I)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(II)集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意
[m,n]D,都存在[m,n],使得等式成立”,
試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;
(III)設(shè)是方程的實(shí)數(shù)根,求證:對(duì)于定義域中任意的.
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:①方程,有實(shí)數(shù)根②函數(shù)的導(dǎo)數(shù)滿足.
(I) 若函數(shù)為集合M中的任意一個(gè)元素,證明:方程只有一個(gè)實(shí)數(shù)根;
(II) 判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(III) 設(shè)函數(shù)為集合M中的任意一個(gè)元素,對(duì)于定義域中任意,當(dāng),且時(shí),證明:.
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)
根;②函數(shù)”[來(lái)源:學(xué)+科+網(wǎng)Z+X+X+K]
(I)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(II)集合M中的元素具有下面的性質(zhì):若 的定義域?yàn)镈,則對(duì)于任意
成立。試用這一性
質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;
(III)對(duì)于M中的函數(shù) 的實(shí)數(shù)根,求證:對(duì)于定義
域中任意的當(dāng)且
ABABD DCAAD AC
13. 2; 14.52; 15. ; 16 ,0 17. 或
18. 解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,則x=-m或x=m,
當(dāng)x變化時(shí),f’(x)與f(x)的變化情況如下表:
x
(-∞,-m)
-m
(-m,)
(,+∞)
f’(x)
+
0
-
0
+
f (x)
極大值
極小值
從而可知,當(dāng)x=-m時(shí),函數(shù)f(x)取得極大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依題意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.
又f(-1)=6,f(-)=,
所以切線方程為y-6=-5(x+1),或y-=-5(x+),
即5x+y-1=0,或135x+27y-23=0.
19. 解:(1)由已知,,分別取,得,,,
;
所以數(shù)列的前5項(xiàng)是:,,,,;
(2)由(1)中的分析可以猜想.
下面用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),猜想顯然成立.
②假設(shè)當(dāng)時(shí)猜想成立,即.
那么由已知,得,
即.所以,
即,又由歸納假設(shè),得,
所以,即當(dāng)時(shí),公式也成立.
當(dāng)①和②知,對(duì)一切,都有成立.
20. 解: (Ⅰ)改進(jìn)工藝后,每件產(chǎn)品的銷售價(jià)為,月平均銷售量為件,則月平均利潤(rùn)(元),
∴與的函數(shù)關(guān)系式為 .
(Ⅱ)由得,(舍),
當(dāng)時(shí);時(shí),
∴函數(shù) 在取得最大值.
故改進(jìn)工藝后,產(chǎn)品的銷售價(jià)為元時(shí),旅游部門(mén)銷售該紀(jì)念品的月平均利潤(rùn)最大.
21. 解:(1)因?yàn)椋?
所以滿足條件
又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根0.
所以函數(shù)是集合M中的元素.
(2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根),
則,
不妨設(shè),根據(jù)題意存在數(shù)
使得等式成立
因?yàn)椋?/p>
與已知矛盾,所以方程只有一個(gè)實(shí)數(shù)根.
22. 解:(Ⅰ),.∴直線的斜率為,且與函數(shù)的圖象的切點(diǎn)坐標(biāo)為. ∴直線的方程為. 又∵直線與函數(shù)的圖象相切,
∴方程組有一解. 由上述方程消去,并整理得
①
依題意,方程①有兩個(gè)相等的實(shí)數(shù)根,
解之,得或 .
(Ⅱ)由(Ⅰ)可知,
. .
∴當(dāng)時(shí),,當(dāng)時(shí),.
∴當(dāng)時(shí),取最大值,其最大值為2.
(Ⅲ) .
, , .
由(Ⅱ)知當(dāng)時(shí), ∴當(dāng)時(shí),,
. ∴
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com