(2)數(shù)列{a­n}滿足數(shù)列{an}是等差數(shù)列嗎?請給予證明, 查看更多

 

題目列表(包括答案和解析)

(14分)已知函數(shù)

 (1)求的值;

 (2)數(shù)列{a­n}滿足數(shù)列{an}

是等差數(shù)列嗎?請給予證明;

 (3),試比較nSn的大小.

查看答案和解析>>

 已知函數(shù)

 (1)求的值;

 (2)數(shù)列{a­n}滿足數(shù)列{an}是等差數(shù)列嗎?請給予證明;

 (3),試比較nSn的大小.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知a為實數(shù),數(shù)列{an}滿足a1=a,當n≥2時,an=
an-1-3     (an-1>3)
4-an-1    (an-1≤3)
,
(1)當a=100時,填寫下列列表格:
n 2 3 35 100
an
(2)當a=100時,求數(shù)列{an}的前100項的和S100;
(3)令bn=
an
(-2)n
Tn=b1+b2+…+bn
,求證:當1<a<
4
3
時,Tn
4-3a
3

查看答案和解析>>

已知數(shù)列{an},an=pn+λqn(p>0,q>0,p≠q,λ∈R,λ≠0,n∈N*).
(1)求證:數(shù)列{an+1-pan}為等比數(shù)列;
(2)數(shù)列{an}中,是否存在連續(xù)的三項,這三項構成等比數(shù)列?試說明理由;
(3)設A={(n,bn)|bn=3n+kn,n∈N*},其中k為常數(shù),且k∈N*,B={(n,cn)|cn=5n,n∈N*},求A∩B.

查看答案和解析>>

14、已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項.現(xiàn)給出以下四個命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則a1=0;
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2
其中真命題有
②③④

查看答案和解析>>

一:選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

B

B

B

D

B

D

C

C

A

 二、填空題:

13、0

14、

15、

16、①②

三、解答題:

17、(Ⅰ)∵

        

 

 

 

的最大值為,最小正周期是!6分 

注:得出表達式的簡化形式得4分,最大值、周期各得1分。

(Ⅱ)由(Ⅰ)知

成立的的取值集合是………10分

注:正確寫出正弦的單調(diào)增區(qū)間2分,答案正確2分。

18、解:(Ⅰ),      

 ,

隨機變量的分布列為

0

1

2

3

P

數(shù)學期望………………………………………8分

注:每個概率算對得1分,分布列2分,期望2分。

   (II)所求的概率…………12分

注:知道概率加法公式得2分,結果正確得2分。

19、(本題滿分12分)

證明:(1)在直三棱柱

∵底面三邊長,,

,              --------------------------------1分

又直三棱柱中  , 

      

       ---------------------------------3分

;                 ---------------------------------4分

(2)設的交點為,連結,---------------------5分

∵D是AB的中點,E是BC1的中點,

,                    ----------------------------7分

,,

.              ----------------------------8分

(3)過點C作CF⊥AB于F,連接C1F         

由已知C1C垂直平面ABC,則∠C1FC為二面角的平面角 ----------9分

在Rt△ABC中,,,,則           ----------10分

                                  ----------11分

∴二面角的正切值為                              ---------- 12分

(另:可以建立空間直角坐標系用向量方法完成,酌情給分,過程略)

20、解(1)

增函數(shù),(0,2)為減函數(shù)

      ………………………………………………2分

       (2), …………………         4分

                            5分

       ……………………7分

   (3)

      

       ,

       ……………………………………………………………………12分

21、 解:(1)f(x)對任意

                             2分

        令

                                       4分

   (2)解:數(shù)列{an}是等差數(shù)列    f(x)對任意x∈R都有

        則令                        5分

       ∴{a­­n}是等差數(shù)列                                              8分

   (3)解:由(2)有                         9分

       

∴Tn≤Sn                  該題也可用數(shù)學歸納法做。              12分

22、解:(1)∵

∴線段NP是AM的垂直平分線,                                      2分

                                   3分

                                            

∴點N的軌跡是以點C、A為焦點的橢圓;                             4分

∴點N的軌跡E的方程是                                  5分

(2)當直線的斜率不存在時,,,∴=;         6分

當直線的斜率存在時,設其方程為,

,△,              7分

設G(x1,y1),H(x2,y2)

,,∵,∴   8分

,,                             9分

,,,                  10分

 ,

∵點在點、之間  ,   ∴<1                                   11分

的取值范圍是[)。


同步練習冊答案