題目列表(包括答案和解析)
設(shè)函數(shù)
(I)求的單調(diào)區(qū)間;
(II)若函數(shù)無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍.
已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)若函數(shù)的圖象上存在一點(diǎn)為切點(diǎn)的切線的斜率成立,求實(shí)數(shù)a的最大值
已知函數(shù).
(I)求的單調(diào)區(qū)間;
(II) 若在處取得極值,直線與的圖象有三個(gè)不同的交點(diǎn),求的取值范圍。K^S*5U.C#O
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.
【解析】第一問(wèn)定義域?yàn)檎鏀?shù)大于零,得到..
令,則,所以或,得到結(jié)論。
第二問(wèn)中, ().
.
因?yàn)?<a<2,所以,.令 可得.
對(duì)參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">. ………………………1分
.
令,則,所以或. ……………………3分
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.
令,則,所以.
因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為. ………………………7分
(II) ().
.
因?yàn)?<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當(dāng),即時(shí),
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當(dāng),即時(shí),在區(qū)間上為減函數(shù).
所以.
綜上所述,當(dāng)時(shí),;
當(dāng)時(shí),
一、選擇題:
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
A
C
D
C
C
A
D
B
D
C
二、填空題(本大題共4小題,每小題4分,共16分)
13、; 14、; 15、32; 16、2
三、解答題:(本大題共6小題,共74分,)
17、解:(I)
……………………………………………………4分
………………………………………………………………6分
(II)由余弦定理得
……………………………………………………………………9分
而,
函數(shù)
當(dāng)………………………………………12分
18、解:由上表可求出10次記錄下的有記號(hào)的紅鯽魚(yú)與中國(guó)金魚(yú)數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)目相同,設(shè)池塘中兩種魚(yú)的總數(shù)是,則有
, 即 , ------------4分
所以,可估計(jì)水庫(kù)中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)量均為25000. ------------6分
(Ⅱ)顯然,, -----------9分
其分布列為
0
1
2
3
4
5
---------11分
數(shù)學(xué)期望. -----------12分
|