題目列表(包括答案和解析)
(本小題滿分16分)定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
已知函數(shù);.
(1)當(dāng)時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;
(3)若,函數(shù)在上的上界是,求的取值范圍.
.(本小題滿分16分)
已知函數(shù),并設(shè),
(1)若圖像在處的切線方程為,求、的值;
(2)若函數(shù)是上單調(diào)遞減,則
① 當(dāng)時,試判斷與的大小關(guān)系,并證明之;
② 對滿足題設(shè)條件的任意、,不等式恒成立,求的取值范圍
(本小題滿分16分)
已知等差數(shù)列中,,令,數(shù)列的前項和為.
(1)求數(shù)列的通項公式;
(2)求證:;
(3)是否存在正整數(shù),且,使得,,成等比數(shù)列?若存在,求出的值,若不存在,請說明理由.
(本小題滿分16分)已知橢圓:的離心率為,直線
:與橢圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直與橢圓的長軸,動直線垂直于直線于點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程.
(本小題滿分16分)
已知數(shù)列滿足,(1)若,求;
(2)是否存在,使當(dāng)時,恒為常數(shù)。若存在求,否則說明理由;
(3)若,求的前項的和(用表示)
1、1 2、10 3、-49 4、70 5、
6、27 7、直角三角形 8、70 9、3 10、2
11、6 12、3<x<2 13、3 14、
15解:(1) ………3分
=28-3n ………7分
(2) ………10分
= ………14分
16解:(1)由題意得 ……………………3分
由②得或,代入①③檢驗得. ……………………5分
(2)由題意得, ……………………7分
解得或,檢驗得,m=-1 ……………………10分
(3)由題意得 ……………………12分
解得
所以或 ……………………15分
17解、(I)由題意及正弦定理,得 ①,
②, ……………………4分
兩式相減,得. ………………………6分
(II)由的面積,得, …………8分
由余弦定理,得 …………………10分
………………12分
又 所以. ……………14分
18 解:(1)A、B、C三點(diǎn)共線知存在實數(shù) ………3分
即,
則 ………7分
(2) ………9分
………13分
當(dāng) ………15分
19解:(I)m•n= ┉┉┉┉2分
== ┉┉┉┉┉4分
∵m•n=1∴ ┉┉┉┉┉┉5分
= ┉┉┉┉┉┉7分
(2)∵(
由正弦定理得 ┉┉┉┉┉┉9分
∴
∴
∵
∴,且
∴ ┉┉┉┉┉┉12分
∴
∴ ┉┉┉┉┉┉14分
又∵f(x)=m•n=,
∴f(A)=
故函數(shù)f(A)的取值范圍是(1,) ┉┉┉┉┉┉16分
20.(1)由…………………………………2分
…………………5分
(2)q=1時,S=49
q≠1時,S=
=2………………9分
(3)∵
∴
∴
當(dāng)……………………………………11分
∴當(dāng)
設(shè)T=
∴
= …………………………………………14分
當(dāng)51≤n≤100時,
=295+
=295
=295…………………………………16分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com