當(dāng)=4時.摸出的小球為 查看更多

 

題目列表(包括答案和解析)

在一個箱子中放有6個均勻的小球,分別標(biāo)有編號1、2、3、4、5、6;每次從中取出一球,記錄下號碼后再放回箱中,當(dāng)記有3個不同的號碼時立即停止摸球,則記有5個號碼停止摸球的概率為

[  ]

A.

B.

C.

D.

查看答案和解析>>

(14分)一個袋中有8個大小相同的小球,其中紅球1個,白球和黑球若干,現(xiàn)從袋中有放回地取球,每次隨機取一個,又知連續(xù)取兩次都是白球的概率為1/4.

   (Ⅰ)求該口袋內(nèi)白球和黑球的個數(shù);

(Ⅱ)規(guī)定取出1個紅球得2分,取出1個白色球得1分,取出1個黑色球得0分,連續(xù)取三次分?jǐn)?shù)之和為4分的概率;

(Ⅲ)現(xiàn)甲、乙兩個小朋友做游戲,方法是:不放回從口袋中輪流摸取一個球,甲先取,乙后取,然后甲在取,直到兩個小朋友中有1人取得黑球時游戲終止,每個球在每一次被取出的機會均相同,求當(dāng)游戲終止時,取球次數(shù)不多于3次的概率.

查看答案和解析>>

(本小題滿分12分)一個袋中有8個大小相同的小球,其中紅球1個,白球和黑球若干,現(xiàn)從袋中有放回地取球,每次隨機取一個,又知連續(xù)取兩次都是白球的概率為

(1)求該口袋內(nèi)白球和黑球的個數(shù);

(2)若取一個紅球記2分,取一個白球記1分,取一個黑球記0 分,連續(xù)取三次分?jǐn)?shù)之和為4分的概率;

(3)現(xiàn)甲、乙兩個小朋友做游戲,方法是:不放回從口袋中輪流摸取一個球,甲先取、乙后取,然后甲再取,直到兩個小朋友中有1人取得黑球時游戲終止,每個球在每一次被取出的機會均相同.求當(dāng)游戲終止時,取球次數(shù)不多于3的概率。

查看答案和解析>>

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(1)記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.試問當(dāng)n等于多少時,P的值最大?
(2)在(1)的條件下,將5個白球全部取出后,對剩下的n個紅球全部作如下標(biāo)記:記上i號的有i個(i=1,2,3,4),其余的紅球記上0號,現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號,求ξ的分布列,期望和方差.

查看答案和解析>>

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(1)記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.試問當(dāng)n等于多少時,P的值最大?
(2)在(1)的條件下,將5個白球全部取出后,對剩下的n個紅球全部作如下標(biāo)記:記上i號的有i個(i=1,2,3,4),其余的紅球記上0號,現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號,求ξ的分布列,期望和方差.

查看答案和解析>>


同步練習(xí)冊答案